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2 CLASSICAL DISPERSION
THEORY

2.1 INTRODUCTION

An understanding of lasers requires some knowledge of the way in which light and
matter interact. Many features of this interaction may be explained using a simple
classical model. In this chapter and the next we describe this model and use it to
introduce some concepts that are especially important for lasers.

‘We assume that the reader has previously encountered Maxwell’s equations, at
least briefly, and understands that they provide the most fundamental description
of electric and magnetic fields. For a neutral dielectric medium (one with no free
charges) Maxwell’s equations are

V-D=0 (2.1.1)
V-B= (2.1.2)
B
VXE=-— 1.
” (2.1.3)
aD
VXH=— 2.1.4
py (2.1.4)

We will be interested only in nonmagnetic media, for which
B = yoH (2.1.5)
where pg = 41 X 1077 N/A?. The electric displacement D is defined as
D=¢E+P (2.1.6)

where 1/47e, = 8.9874 X 10° N-m*/C” and the polarization P is the electric
dipole moment per unit volume of the medium. P is the only term in the Maxwell
equations relating directly to the medium.

Applying the curl operation to both sides of Eq. (2.1.3), we obtain

a
Vx(VxE)=—V><?a—]:=—5;(VxB) (2.1.7)




22 CLASSICAL DISPERSION THEORY
Now we use the general identity (see Problem 2.1)
VX(VXE)=V(V-E)-VE (2.1.8)

of vector calculus, together with (2.1.5) and the Maxwell equation (2.1.4), to write

s 3’D

V(V-E) — VE = —, 5 (2.1.9)

Finally we use the definition (2.1.6) of D and rearrange terms:

1 ’E 1 %P
VE-V(V-E) - ——% = ——~— 1.
( ) c? 9r*  gc? or? (2.1.10)
Here we have used the fact that
1

Eop = = (2.1.11)

where ¢ = 2.998 X 10® m/sec is the velocity of light in vacuum.!

Equation (2.1.10) is a partial differential equation with independent variables
X, ¥, Z, and . It tells us how the electric field depends on the electric dipole moment
density P of the medium. We will be particularly interested in transverse fields
(sometimes called solenoidal or radiation fields). Such fields satisfy

V-E=0 (2.1.12)
Transverse fields therefore satisfy the inhomogeneous wave equation
1°E 1 #%P
VE - 5-——5 =—5—> 2.1.13
c? a®  gc? ar? ( )

This is the fundamental electromagnetic field equation for our purposes. In or-
der to make any use of it we must somehow specify the polarization P. This cannot
be done solely within the framework of the Maxwell equations, for P is a property
of the material medium that the field E propagates in. We need to know how a
dipole moment density P is produced in the medium. For this purpose we will
introduce in the next section a theory of dielectric media.

First, however, we will finish this section with a discussion of solutions to the
homogeneous (free-space) wave equation, which applies when there is no polar-

L. For convenience we include inside the cover of the book a table of physical constants that appear
frequently in our study of lasers.
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_ ization present. Laser resonator theory is based on the free-space wave equation
and-free-space solutions. Such solutions are useful, even though lasers do not op-
erate in vacuum, because most laser media are optically homogeneous.

We will consider only the case of a rectangular cavity, as sketched in Figure
1.10. We also imagine we have perfectly reflecting walls; then the components of
the electric field parallel to the walls must vanish on the walls. The electric field
.inside the cavity satisfies the wave equation

1 3?
VZE—?——ZE=O

2.1.14
ot A )

For a monochromatic field of angular frequency w = 27», we may use the com-
plex-field representation (where the physical electric field is understood to be the
real part of the right-hand side):

E(r, t) = Eo(r) e (2.1.15)
nd (2.1.14) becomes
VZEy(r) + k*Eo(r) =0, k= w/c (2.1.16)
That is,
H (V2 + k%) Ep(r) = 0 (2.1.17)

axid likewise for the y and z components. .
To solve (2.1.17), it is convenient to use the method of separation of variables.
. Separation means that the solution is written in a factored form:

EOx(x7 ¥, Z) = F(‘x) G(y) H(Z) (2‘1'18)
_and then inserted in (2.1.17). After carrying out the differentiations required by
V% = 3%/ax* + 8%/3y* + 8*/dz*, we divide through by the product FGH and
obtain

1d°F 1d°G

1 d’H
Fal Toar T HE

+k2=0 (2.1.19)

Since each of the first three terms on the left side is a function of a different in-
dependént variable, Eq. (2.1.19) [and hence (2.1.17)] can only be true for all x,
y, and z if each term is separately constant, i.e.,
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1 d°F )
Fal - Tk (2.1.20a)
1 d°G
G —k2 (2.1.20b)
1 d*H )
Haz =k (2.1.20¢)
with
k2 + k2 + k2 = k2 (2.1.21)

The boundary condition that the tangential component of the electric field vanishes
on the cavity walls means that

Eo(x,y = 0,2) = Ep(x,y = L, z) = 0 (2.1.22a)
and
Eo(x,9,2=0) = Ep(x, y, 2 =L) = 0 (2.1.22b)
or |
G(0) = G(L,) = 0 (2.1.23a)
H(0) =H(L) =0 (2.1.23b).

A solution of (2.1.20b) satisfying the boundary condition G(0) = 0 is

G(y) = sink,y (2.1.24)

In order to satisfy G(L,) = 0 as well, we must have sin k,L, = 0, or in other
words

kL, =mr, m=0,1,2,... (2.1.25a)

In exactly the same way we find that solutions of Eq. (2.1.20c) satisfying (2.1.23b)
are only possible if

kL =nr, n=0,1,2,... (2.1.25b)

Finally, f:onsideration of the equations for the y and z components of Ey(r), to-
gether with the appropriate boundary conditions, shows that allowed solutions for
Eq(r) must satisfy (2.1.25a), (2.1.25b), and
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kL =Ir, 1=0,1,2,... (2.1.25¢)

The full solutions for the components of E (r, ¢) satisfying Maxwell’s equations
and the boundary conditions inside the cavity are (Problem 2.2)

; lrx mwy nwz
E.(x,y,2,1) = Aye " cos — si in —— 2.1.26
(X, 3, 2, 1) e " cos L sin I sin I ( a)
; lrx m n
E,(x,y,2,t) = Aje™™ sin Z—X cos Zl:y sin —Ef (2.1.26b)
. [ m
E(x,y,2,t) = Aje ™ sin T2 sin Y o5 T2 (2.1.26¢)
L, oL, I

where the coefficients A,, 4,, and A, must satisfy the condition (Problem 2.3)

l m n
— A, +—A, +—A4, =0 2.1.27
LA T AT (2.1.27)

implied by the Maxwell equation V - E = 0, valid in the empty cavity.
From Egs. (2.1.21) and (2.1.25) we have

12 m* n?
2= gl =+~ + =} 2.1.28
k 'y <L§ + Lf, Lf ( )

The possible modes of the rectangular closed cavity have allowed frequencies de-
termined by (2.1.28) and k = w/c = 2xv/c [recall (2.1.16)]:

c (12 m* n?\'?

V=V, = 5 <z}-{2‘ + _L—i- + E) (2.1.29)
This formula is a generalization of (1.3.7), in which case the cavity was assumed
cubical (L, = L, = L, = L). The same mode-density formulas given in Chapter
1 are valid here, independent of cavity shape, as long as L,, L,, L, are all much
larger than A = ¢/». That is, the number of modes in the frequency interval [, »

+ dv] is

2
N, =y gy (2.1.30a)
C

'

and in the wavelength range d\ the number is (Problem 2.4)

v\ dx
dN, = 8x <F> ~ (2.1.30b)
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e It is not difficult to derive the important mode-density formulas fdr dN, and dN, given
above. First of all, the number of modes available in a cavity is infinite. This is clear
because in (2.1.29), for example, an infinite number of values are permitted for any of the
three mode indices I, m, n. However, the number of modes whose frequency lies in the
neighborhood dv of a given value v is finite. This number is related to the number of modes
whose frequency is less than v, and it is this number we will determine first.

The number of modes we want is the number of terms in the triple sum:

N = ;ZZ (2.1.31)

where the upper limits on the sums are determined by the maximum frequency to be in-
cluded. The simplest approach to this problem is to stipulate that the cavity is much larger
than a typical wavelength (obviously true for realistic cavities and optical wavelengths).
Then the discrete nature of the sum is not important and we can rewrite the sum as a triple
integral:

N = Sdl S dm S dn (2.1.32)
In addition, for a large cavity the shape is not very important in determining the number of
modes (although critical for the spatial characteristics of the modes, of course), so for our
present purpose we can just as well assume the simplest shape—a cube with sides equal to
L. For a cubical cavity (2.1.29) becomes

2
<27L> P =1+ m?+p? (2.1.33)
It is a useful trick to regard the triplet ([, m, n) as the components of a fictitious vector
q:
q=il+ jm + kn (2.1.34a)
with magnitude N
C=¢*=02+m?+n? (2.1.34b)

Then the triple integral can be denoted

N = ”S d’q ~ (2.1.39)

Equation (2.1.33) indicates that » depends only on the length, but not the orientation, of
the vector q. Thus we rewrite the mode integral in spherical coordinates:

N= ”S q* dq sin 6, d, do, (2.1.36)

.
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and carry out the integrations to get:

4
N =

°°|=1

4

< (2.1.37)

S q* dg

_drg’
3
Here the factor 4 is the result of the angular integration (4 total solid angle) and the § is
due to the restriction on the original integers I, m, n to be positive, so that only the v;ctors
q in the positive octant of the integration (2.1.35) should be counted as corresponding to
physical modes. .

In (2.1.37) g is the length of the vector q compatible with the given frequency v. From
(2.1.33) it is clear that ¢ = (2L/¢) », so we finally get

=dy =V (2.1.38)

where V = L2 is the cavity volume. o .

Since our derivation of (2.1.38) did not take account of the polarization of the cavity
modes, we are still free to choose independently any two polarizations (see Problem 2.3).
Thus we have

3
N, = 83”3 v (all polarizations) (2.1.39)
c

for the number of possible cavity modes of frequency less than », counting all polari.zations.
The number of possible field modes in the frequency interval from » to » + dp is there-

fore

872

dN, = —5—V dy (2.1.40)
[o4

which is exactly the formula used in Section 1.3 and reproduced in (2.1.30a). The foxTnula
for the density dN, given in (2.1.30b) is obtained from dN, by application of the relation »
= ¢/\ (see Problem 2.4). o

2.2 THE ELECTRON OSCILLATOR MODEL

In classical physics the motion of a particle is described by Newton’s second law.
For a charged particle in an electromagnetic field the force referred to in Newton’s
second law is the Lorentz force
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F=e(E +vxB) (2.2.1)

where e and v are the charge and velocity, respectively, of the particle.

We are interested in the atoms that play roles in laser action. These are atoms
in dielectrics such as crystals, vapors, glasses, and liquids. Atoms are neutral ob-
jects, but (2.2.1) applies to the individual protons and electrons in these atoms.
The interaction of atomic protons and electrons with light can be treated very
accurately in most cases with classical laws and concepts. The quantum-mechan-
ical basis for our classical treatment, and quantum corrections to several classical
formulas, are discussed in Chapter 6.

The electron has mass m, and charge e (a negative number), and the oppositely
charged core of the atom (“‘nucleus’’) has mass m, and charge —e. The nucleus
exerts a binding force F,,, on the electron, depending on the relative separation r,
= I, — I,, as shown in Figure 2.1. The electron also exerts a force F,, on the
nucleus, and according to Newton’s third law,

Fne(ren) = - Fen(ren) (222)

The Newton equations of motion for the electron and nucleus are therefore

d*r,
m, dtZ = eE(re: t) + Fen(ren) (22.33)
and
d’r,
m,—5 = —eE(r,, 1) + F(r.,) (2.2.3b)

In writing Egs. (2.2.3) we have dropped the magnetic contribution to the Lorentz
force. Because optical phenomena do not normally involve relativistic particle ve-
locities, we can safely disregard the magnetic force hereafter.

The interaction of electromagnetic fields with charges is mainly determined by

o€
ot
e~ n
Ne -—
Te
- Figure 2.1 The position vectors r, and r, of the electron and
n nucleus, measured from some origin O. By Newton’s third law
the force ¥, (r, — r,) exerted by the nucleus on the electron is
| equal in magnitude but opposite in direction to the force F,.(r,
0 — r1,) exerted by the electron on the nucleus.

.
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the acceleration of the charges. The nucleus is so massive compared to an electron
that its acceleration is generally negligible. In this case only the electron equation
is needed. The binding force F,, is strong enough to restrict the atomic electrons
to small excursions about the (approximately stationary) nucleus. Thus we can
write r, = r, + X, where X is an atomic dimension (|x| = 10 A = 1 nm =
107° m, 1 nanometer). The electric radiation field varies on the scale of an optical
wavelength (A = 6000 A = 600 nm for yellow light) and is not sensitive to
variations as small as |x|, so we have E(r,, t) = E(r,, 1).

Within these approximations it is easy to see that the effective interaction equa-
tion replacing Egs. (2.2.3) is

m‘% = eE(R, 1) + F.,(x) (2.2.4)

Here we have dropped the subscript e from the electron mass and have written R
for the position of the stationary nucleus. Actually, x and R are the relative co-
ordinate and center-of-mass coordinate of the electron-nucleus pair, and m is the
associated reduced mass. These terms are defined in the black-dot section below.
For our purposes it is accurate to continue to think of R as the position of the
nucleus and m as the electron mass. Only in exceptional cases in which the two
charges have nearly equal mass, such as the positronium atom (an atom in which
the nucleus is a positron, i.e., an anti-electron, rather than a proton), would sig-
nificant corrections be required.

Note that the electric force in (2.2.4) can be written in terms of a potential V(x,
R, 7). If we define

V(x,R, ) = —ex - E(R, 1) (2.2.5)
then we have

eE(R, t) = —V,[—ex - E(R, 1)]
-V, V(x, R, 1) (2.2.6)

Il

where V, indicates the gradient with respect to the coordinate x. The potential V'
is proportional to ex = p = e(r, — r,), which is the electric dipole moment of
the atom. Thus the equation of motion (2.2.4) is frequently identified as belonging
to the dipole approximation. Recall that the main approximation is to take E to
depend only on the nuclear position R. This was justified by the tightness of the
atomic binding, which restricts X to a range much smaller than the wavelength of
the radiation described by E.
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® The center of mass of the electron-nucleus system is defined to be

_mr, + mr,

R
I%; (2.2.7a)
where M = m, + m, and x is the electron coordinate relative to the nucleus,
X=r, (2.2.7b)
in terms of which
m,
.r,=R 4+
ITh (2.2.8a)
r,=R — % x (2.2.8b)
Then Egs: »(2.2.3) may be written as
- 4R d’x m,
m, i + mF =c¢E(R + MX’ t} + F,(x) (2.2.9a)
dR dx m,
m,,zz— —-m 2 —eE[R — EX, t) + F,(x) (2.2.9b)
where
memn memn
m = =——" (2.2.10)

M _me+m,,

is called the reduced mass of the electron-nucleus system.
By adding and subtracting Eqgs. (2.2.9), and using (2.2.2), we obtain the equations of
motion -

d’R my,
MF=e[E<R+M-X, t> —E<R-%x, rﬂ (2.2.11a)

and

dx e m,, m,
m =3 |:E<R + ﬁx, t) + E<R — MX’ t>]
dR

+ Fu(x) + 4 (m, = m) =3

(2.2.11b)

Equation (2.2.11a) describes the motion of the center of mass of the atom. In the absence
of an external field, the center of mass moves with constant velocity. Equation (2.2.11b)
describes the motion of the relative coordinate x of the electron-nucleus system.
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We have already mentioned that optical radiation is characterized by wavelengths that
are a few thousand Angstrom units (1 A =101 m) or larger, and the electron-nucleus
separations in atoms are typically only 1-10 A in size. The extreme disparity of these sizes
is the basis of a fundamental approximation called the dipole approximation. The dipole
approximation arises from the leading terms of a Taylor series expansion of the type

F(X + 8X) = F(X) + 8XF (X) + 1 (6X)" F"(X) + - - -
applied to the electric field vectors in (2.2.11). The vector analog of the Taylor series gives
E(R-"%x,t) =E(R, 1) — =x - VE(R, ) + - - - (2.2.12a)
M > - > M 1] L]
and

E<R + %x t> = E(R, 1) + %x - VE(R, 1) + - - - (2.2.12b)

and if we retain only the first two terms in the Taylor series (2.2.12), then Egs. (2.2.11)
become '

dR

M7z = e VER. 1) ' (2.2.13a)
m% =~ ¢E(R, 1) + (m,, A—lme> ex - VE(R, 1) + F(x) (2.2.13b)

We have already mentioned that the vector
p =ex (2.2.14)
is the electric dipole moment of the electron-nucleus pair. In terms of p Eq. (2.2.13a) is

2
M%;I; =p-VE(R,7)=F = —VxV(x, R, 1) (2.2.15)

where Vg denotes the gradient with respect to the coordinate R and
V(x,R,t) = —p - E(R, 1) (2.2.16)

is the potential energy of an electric dipole p at the point R in an electric field. It was
already identified in (2.2.5) above. Finally, we retain only the leading E term on the right-
hand side of (2.2.13b) and obtain .
. d*x
m_z = eE(R, t) + F,,(x) = =V,V + F,,(x)

(electric-dipole approximation) (2.2.17)

which is Eq. (2.2.4) again, this time with m, x and R carefully defined. *
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For most of our purposes we can assume that the center-of-mass motion of the
atom is unaffected by the field, so that we can ignore (2.2.15). However, this is
possible only because we are interested mainly in explaining laser action, which
depends mostly on internal transitions within atoms or molecules, transitions based
on the relative coordinate x. For other purposes Eq. (2.2.15) is essential. For
example, the important topics of laser trapping and laser cooling depend directly
on the effects produced by laser light on the atomic center of mass.

In order to-proceed with (2.2.4) or (2.2.17) it is necessary to know F,,(x). For
reasons that only quantum theory can explain (see 'C”haf)ter 6), the classical theory
satisfactorily treats many important features of the interaction of light with matter
by adopting an ad hoc hypothesis about F,, due to H. A. Lorentz (around 1900).
This hypothesis states that an electron in an atom responds to light as if it were
bound to its atom or molecule by a simple spring. As a consequence the electron
can be imagined to oscillate about the nucleus.

This electron oscillator model is often called the Lorentz model of an atom. Tt
is not really a model of an atom as such, but rather a model of the way an atom
responds to a perturbation> The Lorentz model was developed before atoms were
understood to have massive nuclei. Lorentz simply asserted that each electron in
an atom has a certain equilibrium position when there are no external forces. Under
the influence of an electromagnetic field, the electron experiences the Lorentz force
and is displaced from its equilibrium position, and according to Lorentz ‘‘the dis-
placement will immediately give rise to a new force by which the particle is pulled
back towards its original position, and which we may therefore appropriately dis-
tinguish by the name of elastic force.””? Lorentz’s assertion is equivalent to the
replacement F,, (x) = —k x, where k, is the ‘‘spring constant’’ associated with
the hypothetical elastic force. This leads to the equation

d*

m—z = eE(R, t) — kx
(Lorentz-model fundamental equation)  (2.2.18a)

or

d? e
22 T e x=—E[R 1), (2.2.18b)

where we have defined the electron’s natural oscillation frequency wo = vk, /m.
It is easy to see how a nonzero dipole moment density P such as is required in
the wave equation (2.1.13) arises in the electron oscillator model. Let us continue
to suppose that each atom of the medium has only one electron. When a field is
applied, each atom’s electron is displaced by some x from its original position
(Figure 2.2). Thus, according to (2.2.14), each atom has a dipole moment p =

2. H. A. Lorentz, The Theory of Electrons (Dover, New York, 1952), p. 9.
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P
electron at x

P Figure 2.2 The electron oscillator (Lorentz) model of an

= atomic electron. An applied field displaces the electron from
equiligrium its equilibrium position. The atoml reacts as though the elec-
position (origin) tron were a charged mass on a spring.

ex. (The electron charge e is negative, so that p points from the negative charge
to the positive.) If the density of atoms is denoted N, then the density of dipole
moments is N times the individual dipole moment of each atom. That is, we have
the polarization density

P = Np = Nex (2.2.19)

induced in the medium by the field.

This expression for P closes a circle. We now have a model for the interaction
between electromagnetic radiation and a material medium consisting of one-elec-
tron atoms. The Maxwell equation (2.1.13) tells us how the electric field E de-
pends upon the dipole moment density P of the medium. Newton’s equation
(2.2.18) tells us how the electron displacement x depends upon the electric field
E. And Eq. (2.2.19) connects these basic equations by relating P to x. The electron
oscillator model thus ties together the Maxwell equations with Newton’s law of
motion. Solutions of these coupled equations will provide the model’s predictions
about the mutual interaction of light and matter.

- 2.3 REFRACTIVE INDEX AND POLARIZABILITY

In many applications it is necessary to know the effect on a bound electron of a
monochromatic field, i.e., a field varying purely sinusoidally in time with the sin-
gle frequency w. It will often be convenient for our purposes to consider a mono-
chromatic plane wave, i.e., a monochromatic wave having the same value across
a plane perpendicular to the direction (z, say) of propagation. We will furthermore

- deal initially with a linearly polarized wave. In this case the electric field at the

position of the atom has the form
E(z, t) = £E; cos (0t — kz) (2.3.1)

where k is an undetermined constant. We assume that the wave amplitude E; does
not depend on # or z. The unit vector £ specifies the polarization of the wave and
lies in the xy plane, normal to the z axis (i.e., the wave is ‘‘transverse’’). The
period of the wave described by (2.3.1) is 27 /w, and so the frequency » is » /2.
Finally we recall that the wavelength, or spatial period, of the wave is A = 27 / k.
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The electric field (2.3.1) is transverse, satisfying condition (2.1.12):

3
E+2g

V. = —
E ox ay

+—E =0 (2.3.2)

9
0z
because it does not depend upon x or y and because E, = 0 (because g =0).1If

E is also to be a solution of Maxwell’s equations in vacuum, it must satisfy the
wave equation (2.1.13) with P = 0:

1 82
V’E — ?Tj =0 (2.3.3)

Suppose we try to satisfy this wave equation with the plane wave given in Eq.
(2.3.1). Then since V’E = 3’E /3z% = —k2E and 0°E /3t = —w’E in this case,
we must have

2
<—k2 + w_2> £Ey cos (wr — kz) = 0 (2.3.4)
c

Except in the trivial and physically uninteresting case E, = 0, we can satisfy
this equation only if the constant k satisfies

e
©

k=

l

(2.3.5)

]

C

This relation between k and w is an example of a dispersion relation. We have the
two possibilities k = + w/c, or

E(z, 1) = £E; cos w(t + z/c).

The choices k = w/cork = —w /c correspond respectively to waves propagating
in the positive or negative z direction with the phase velocity

v, = ﬁ = (2.3.6)

This merely tells us something we already know: the propagation velocity of an
electromagnetic wave in vacuum is ¢, the (vacuum) speed of light, and (2.3.5) is
sometimes called the vacuum dispersion relation.

Now let us consider the case of a material medium of propagation, where the
right-hand side of Eq. (2.1.13) is not zero. According to the electron oscillator
model of a medium of one-electron atoms, P is given by Eq. (2.2.19), with the
electron displacement x satisfying the equation of motion (2.2.18). If the electric
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field (2.3.1) is to be a solution of the coupled Maxwell-Newton equations it must
be the driving field in the Newton equation (2.2.18): ‘

—5 + wox = & — E, cos (wf — kz) (2.3.7)

e
dt m

‘This equation has the solution®

Xx=8 <62E0“/’}12> cos (wt — kz) (2.3.8)
Wy — w

It is sometimes convenient to write this solution in the form
p=ex =qE (2.3.9)

where we define the electronic polarizability

a(w) = ﬁfzf’" . (2.3.10)

as the ratio of the induced dipole moment p of the atom to the electric field E that
produces this dipole moment.
Thus we have the dipole moment density

Ne?/m
P =Np = Na(w)E = & (w_f/*’;’z> Egcos (wf — kz)  (2.3.11)
-

This is the polarization predicted by the electron oscillator model when there is a
field (2.3.1) in the medium. This solution for the polarization provides the source
term on the right-hand side of the Maxwell equation (2.1.13). In order that we
have a consistent theory, the electric field (2.3.1) appearing in (2.3.11) must sat-
isfy (2.1.13). Using the assumed plane-wave, monochromatic solution 2.3.1) for-
E in (2.1.13), together with the above results for P, we obtain the consistency
condition

w_zNoz(w)
o2

€0

2
<—k2 + w_2> 8E, cos (ot — kz) = — £E, cos (wr — kz) (2.3.12)
C ¢

3. This is the particular solution. The homogeneous solution has been omitted for reasons that are
explained in Section 3.3.
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To satisfy this equation k must satisfy a more general dispersion relation:

k2=w—22<1 +M>

c €
= Z’—ZZ n*(w) (2.3.13)
where we have defined
n*(w) =1+ N—O‘E%“’—) (2.3.14a)

or

n(w) = <1 + Mw—)>l/2

€o

Ne?/m 1/2
= <1 + %?) (2.3.14b)

Wy — W

The plane monochromatic wave (2.3.1) is therefore a solution of the Maxwell
equation (2.3.3) in vacuum if

K = % (vacuum) (2.3.15)

but it can be a solution in a material medium only if
2
2 2 w . .
k* = n*(w) s (material medium) (2.3.16)

In the second case the phase velocity of the wave is

g O €
Tkl n(w)

(2.3.17)

which identifies n(w) as the refractive index of the medium for light of frequency
.

The result (2.3.14) for the refractive index applies to a medium of one-electron
atoms. This restriction may be removed. If we assume that the Z electrons in an
atom respond independently of one another to an imposed field, then the displace-
ment X; of each electron satisfies (2.2.18) with perhaps a different “‘spring con-
stant’ k; for each electron. The solution is given by (2.3.8):
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E,
X; = a<—%L"12> cos (et — k) (2.3.18)

w; —

where w; = (k;/ m)!/? is the natural oscillation frequency of the ith electron. The
dipole moment (2.3.9) of the atom is replaced by

z
p= 2 ex ' (2.3.19)

where the summation is over the displacements of the Z electrons in the atom.
From (2.3.9), therefore, we have the multielectron polarizability

= 2.3.20
a(w) T w? — o? ( )
and the dipole density
2 e*/m
P= sN< 2 —t— 2>E0 cos (wt — kz) (2.3.21)
i=1 W] —w : :

It follows that the generalization of (2.3.14) for a medium of Z-electron atoms is
1/2
N
n(w) = <l + — a(w)>
€

z 9 1/2
= <1 S e—/m—2> (2.3.22a)

2
€pi=1W; — w

* A further generalization occurs if more than one species of atom is present. If

species a has Z, electrons with resonant frequencies labeled w,;, then we have

Zy 2 1/2
n(w) = <1 rnle —?—/"—1—2> (2.3.22b)

2
a €y i=lWwWy gy — W

where N, is the density of species a. In the case of gases, n(w) = 1 for optical
frequencies and we can expand the square root in (2.3.22b) using the binomial
formula (1 + x)" =1 + mx + m(m — 1) x*/2 + - - - . If we retain only the
first-order correction to the zero-order result n(w) = 1, we find

nw)=1+ 2Ny —32/—’"3 (2.3.23)

a 260 i=1 0)21' - W

This approximation implies that the index of a mixture of gases is the proportionate
sum of their individual indices (see Problem 2.5).
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TABLE 2.1 The Maxwell-Newton Equations of the
Electron Oscillator Model

V-D=0, D=gE+P

V-B=90

aB

VXE=—-—

ot

) aD

VXB=py,—

I-Loat

z
P=Ne§1x,-

1

d’x; e

2
=+ wlx, = —E
dr? Y m

Using Egs. (2.3.1), (2.3.13), and (2.3.21), we easily obtain from the Maxwell
equations the corresponding solutions for B and D. In Table 2.1 we collect the
coupled Maxwell-Newton equations of the electron oscillator model, and in Table
2.2 we display the particular solutions we have found for these coupled equations.
For definiteness we have taken the polarization unit vector £ to be X, the unit vector
in the x direction. The reader may easily verify that Table 2.2 provides a solution
to the equations of Table 2.1.

It is sometimes useful to use the electric susceptibility x(w) instead of the po-
larizability a(w). Since x(w) is defined by the relation

P=¢xE (2.3.24)

the connection with o(w) is easily determined, by comparison with (2.3.11), to be
x(0) = Na(w)/e (2.3.25)

Apart from the dimensional factor 1 /¢, (which is not even present in cgs units)
the only physical difference between x and « is that X is directly associated with
a medium (proportional to N) and « is a single-oscillator characteristic. Expres-
sions for quantities associated with an optical medium are usually somewhat sim-
pler to express in terms of x; for example, Eqgs. (2.3.14) for the index of refraction
can be rewritten as

(@) =1 + x(o) (2.3.26a)
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TABLE 2.2 A Solution of the Maxwell-Newton
Equations

o z
E =R E; cos m<t + n(w) —>, E, = constant
c

D

nt(w) E

B = q:"—(:’—)yEocosw<tin(w)5>
C

P=¢ln%w — 1]E
e/m
X; = w2 = sz
z 2 1/2
n(w)=<l + ¥ i/m2>
€ i=1 0w — w
or
n(w) = [1 + x(w)]'/? (2.3.26b)

In the Lorentz model, x(w) is given by

x(w) = Niz 2 —21—5 (2.3:27)

mey i=1 wW; — W

¢ The atoms or molecules of a medium do not form a continuum, but have empty spaces
between them. As a result, there is a difference between the ‘‘mean” field satisfying the
wave equation (2.1.13) and the actual field acting on a given atom. In most cases the only
practical consequence of this difference is that we must modify the expression (2.3.22) for
the refractive index to read

n*(0) =1 _ Na(w)
nfw) +2 3e

(2.3.28)

The origin of this ‘‘Lorentz~Lorenz relation’” is discussed in many textbooks on electro-
magnetic theory. Note that when the tefractive index is close to unity, so that #%(w) + 2
= 3, the Lorentz-Lorenz relation reduces to (2.3.22) or (2.3.26). =
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2.4 ' THE CAUCHY FORMULA

We will now compare the formula (2.3.22) for the refractive index with experi-
mental data. Such data often show an increase of the refractive index with increas-
ing frequency (decreasing wavelength). This is familiar from the way a glass prism
disperses (separates) white light into its spectral components, with violet being
deviated more than red. An example of such ‘‘normal’’ dispersion appears in Fig-
ure 2.3, which gives the refractive index of He gas over a range of wavelengths
extending from the infrared to the ultraviolet.

To compare the dispersion formula (2.3.22) predicted by the electron oscillator
model with experimental results, we first write it in terms of wavelength, A =
2mc/w (This is convenient because one normally measures the wavelength of op-
tical radiation rather than the frequency.):

Ne2 L N

(N)=1+
n(N) 4'11'260m62i=1)\2—)\,2

(2.4.1)

where A, is a wavelength associated with the natural oscillation frequency w; of the
electron oscillator model by the definition

2
N = £me (2.4.2)

w;

It follows immediately from (2.4.1) that if the refractive index at wavelength A
exceeds unity, the sum must be positive; if n(A\) < 1, then the sum is negative.
Most transparent materials we encounter daily (e.g., air, water, glass) have re-
fractive indices greater than unity at visible wavelengths. We therefore conclude
that in most transparent media the electrons have oscillation wavelengths \; that
are less than optical wavelengths, which lie roughly between 4000 and 7000 A,
400-700 nm. From Eq. (2.4.1), we not only have n(\) > 1 but also dn/d\ <
0 for \; < A, consistent with the frequent observation mentioned above. Of course,

370 x10° | n(A)-1 vs. X

365

360 -
355 -
350 -

1 1 1 1 1 1 1 1
2000 6000 10,000
A(A) —

Figure 2.3 Refractive index of helium at standard temperature and pressure.
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in order that n(\) > 1 it is really only necessary that at least one of the \; must
be less than N; we are postulating here that all of the \; are less than visible wave-
lengths A.

If \; < N, we may again use the binomial series expansion

A+x)"=1+me+imm—-1)x2+ --- (2.4.3)
which is valid for |x| < 1, to write
% A2\ NN
m=<1—5\—2> =1+?+<F 4+ .- (2.4.4)
in Eq. (2.4.1). If N2 /A\? is very small, i.e.,

N << \? (2.4.5)

we can approximate (2.4.4) by the first two terms of the expansion, and write

, Ne? z % ’ ‘
(N =14 —5— 27 N = 4.
n“(\) + R N <1 + )\2> (2.4.6)

as an approximation to (2.4.1). If we suppose further that
|n%(N) - 1] < 1 (2.4.7)

we may again use (2.4.3) to obtain the approximation (1 + x)'/? = 1 + x/2 for
x << 1, and write the refractive index given by (2.4.6) as

N2 & A?
N=14+——— 2 N1+ 2.4.8
n(2) ~ 1 87 2eqme? i=1 " <l )\2> ( )

This is a good approximation to n( \) when the two conditions (2.4.5) and (2.4.7)
are met.

Equation (2.4.8) explains why the refractive indices of many gases have long
been known to follow the Cauchy formula

n(\) — 1 = A<1 + %) (2.4.9)

where A and B are constants. Such an empirical relation was proposed by Cauchy
in 1830, before the electromagnetic theory of light. For He gas at standard tem-
perature and pressure (STP), for example, 4 = 3.48 X 10> and B = 2.3 x 10~
cm®. Now we notice that (2.4.8) is of precisely the form (2.4.9), with
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Ne? z
A= 87 2egmc? i§1 N (24.10)
and
z
2N
B ==l (2.4.11)
2N

1l
—

This suggests that gases obeying the relation (2.4.9) satisfy the condition (2.4.5)
assumed in the derivation of (2.4.8). .

A more quantitative check of the electron oscillator model requires a knowledge
of the natural wavelengths X;. The values of the \; are not given by the Lorentz
oscillator model, since they are only a different manifestation of the hypothetical
elastic force constants k;. However, the A; can be determined empirically from
dispersion data. Consider He gas at standard temperature and pressure. Helium is
known to absorb strongly radiation of wavelength A =~ 584 A. Suppose we take
this to be the natural wavelength \; of each electron in the electron oscillator model
of He (atomic number Z = 2). Then

=2(584 x 107% cm)’ = 6.82 x 10~"! cm?

z
Zl N2
z
_217\;‘ =2(584 x 1078 cm)" = 2.33 x 102! cm*

An ideal gas at STP has about 2.69 X 10" atoms (or molecules) per cm® (Problem
2.7). Therefore we compute from (2.4.10) the value 4 ~ 8.23 x 107>, This is
more than twice the tabulated value, given above, that has been measured for He.
For the coefficient B we get =~ 3.42 10! cm?, about 50% greater than the tab-
ulated value.

This example brings out a general feature of our electron oscillator model: it is
often in close qualitative accord with our observations but not in detailed quanti-
tative agreement. Not infrequently it provides, as in this example, reasonable or-
ders of magnitude. Before quantum mechanics, the electron oscillator model was
modified ad hoc in order to bring its numerical predictions in line with experi-
mental results. The nature of this modification will be discussed in Section 3.7,
and in Chapter 6 we will interpret this modification from the standpoint of the
quantum theory of the interaction of light with matter.

It is also interesting to consider the case in which the frequency of the radiation
is much greater than the natural oscillation frequencies of the medium, i.e., the
natural wavelengths are relatively very large: \; >> \. The simplest example
occurs for free electrons, for which there is no elastic binding force. The natural
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oscillation frequencies w; are then zero, and the dispersion formula (2.3.22) re-
duces to

(2.4.12)

eomw2

n(e) = <1 _ Né >1/2

where N is now the density of free electrons. In some cases this result is known
to be fairly accurate; it is applicable, for instance, to the upper atmosphere, where
ultraviolet solar radiation produces free electrons by photoionization (Problem 2.8).
Another example is the refraction of X-rays by glass. In this case the natural os-
cillation frequencies of the medium are not zero, but are much less than X-ray
frequencies. In both of these examples the refractive index is less than one. Thus
X-rays propagating in glass have a phase velocity greater than c.

® Equation (2.4.12) for free electrons shows that the refractive index can even be a pure
imaginary number. This occurs whenever v < w,, where
1/2

@ = <N—e2> , (2.4.13)

meg

is called the plasma frequency. In terms of the plasma frequency the refractive index (2.4.12)
of a free-electron gas may be written as

2 1/2
1
n(w) = (1 - w—;’) = = (02— ) (2.4.14)
[6) w

To understand the physical significance of an imaginary refractive index, let us consider
again the solutions of the Maxwell-Newton equations we have displayed in Table 2.2. To
be specific, the solution corresponding to plane-wave propagation in the positive z direction
is

E(z, 1) = %E, cos w<t - n(w)%) (2.4.15)

This is not feasible if n(w) is imaginary. Since the electric field must obviously be a real
quantity we can instead write

E(z, 1) = Re [RE, el ~ n(@)2/cly (2.4.16)

where Re means ““real part of’’. This reduces to (2.4.15) when n(w) is real. For the free-
electron case n(w) is given by (2.4.14) and we have therefore

E(z, ) = Re [RE, e ' /@*~en)2/e] (2.4.17)
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When v < w, we have
1/2 . .
(w0? — w?) . l(co; - w2)]/2 = ichb(w) (2.4.18)
with b(w) = (1/¢) (e} — 0*)'/? > 0. Equation (2.4.17) then gives
E(z, t) = %, 792 o5 o (2.4.19)

indicating that the electric field decreases exponentially with penetration depth in the me-
dium. It follows from Table 2.2 that the magnetic field is attenuated in the same manner.

The field (2.4.19) is not a propagating wave. Thus when the field frequency w is less
than the plasma frequency wp, the free-electron gas will not support a propagating mode of
the field. The field is therefore reflected. This applies, for instance, to the propagation of
radio waves in the earth’s atmosphere. High-frequency FM radio waves are not reflected
by the ionosphere (w > @), whereas the lower-frequency AM waves are. AM radio broad-
casts therefore reach more distant points on the earth’s surface (see Problem 2.9). e

2.5 ELECTRIC DIPOLE RADIATION

According to Eq. (2.3.8), a monochromatic electric field forces an electron into
oscillation at the frequency of the field. The field thus induces an oscillating dipole
moment in an atom, and according to (2.1.13) this dipole can serve as the source
of a new electric field. The electromagnetic field radiated by an oscillating electric
dipole is discussed in textbooks on electromagnetic theory.* We will only discuss
the most important results needed for our purposes. In the next section we will use
these results to treat the scattering of light by atoms.
Suppose we have a time-dependent electric dipole moment

P = %p(z) (2.5.1)
where the unit vector & specifies the fixed direction in which the dipole is assumed
to point. Then at the position r measured from the dipole the electric and magnetic

field vectors are* ’

1 1 r 1 d r
E s ) = 3 % - PP — —_ — —_ _
(r ) 4e, [ (2 £)t X] ':r3p<t c> * cr? dtp<t c>}

1 s ava a1 1 d?
&8t - %] 5= <t—£> (2.5.2a)

4. See, for example, R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics (Addison-Wesley, Reading, Mass., 1964), vol. 2, Section 21-4, or J. D. Jackson, Classical
Electrodynamics (Wiley, New York, 1975), or J. B. Marion, Classicial Electromagnetic Radiation
(Academic Press, New York, 1965).
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where the unit vector # points from the dipole to r, and r is the magnitude of r
(i.e., r = fr). Note that, owing to the finite velocity ¢ of light, the electric and
magnetic fields at r at time 7 depend upon the dipole moment at the earlier (re-
tarded) time 7 — r/c.

The simplest example of (2.5.2) is the electrostatic case in which p(2) is time-
independent. In this case the fields (2.5.2) reduce to

p
ATegr

B(r,t) =0 (2.5.3b)

>

E(r, 1) = [3(% - £)# — %] : (2.5.3a)

The reader may recall that these electrostatic dipole fields are derivable indepen-
dently of the general formulas (2.5.2), simply by considering the static (Coulomb)
fields of two point charges g and —g separated by a distance d small compared
with r; the electric dipole moment is p = gd and the magnetic dipole moment is
zero. However, we are interested now in the field (2.5.2) radiated by a time-de-
pendent dipole moment, specifically the dipole moment induced in an atom by a
time-dependent external field. _

In particular, we are interested in the rate at which an oscillating electric dipole
radiates electromagnetic energy. We will calculate this rate from the fields (2.5.2).
To do this we use the Poynting vector of an electromagnetic field (recall Problem
2.6):

S=E XH = ¢c’E xB (2.5.4)

The Poynting vector of the field (2.5.2) gives the rate at which electromagnetic
energy crosses a unit area. Its SI units are W /m? but W /cm? is more commonly
used in laser physics. The total rate at which electromagnetic energy is radiated
may be obtained by integrating the normal (radially outward) component of S over
a large sphere of radius R centered at the dipole. Since the differential element of
area on a sphere is given in terms of the polar angle 6 and the azimuthal angle ¢
by

dA = R* sin 0 db d¢ (2.5.5)

the radiated power (written Pwr) at the spherical surface is

T

2T
Pwr = R? S do S dfsin 9 S(R, 0, ¢) - R (2.5.6)
0 0

i

From (2.5.2) and the definition (2.5.4) of the Poynting vector, we see that S(R,
0, ¢) has a term varying as R "%, and other terms falling off as R 3, R ™%, and
R™. The terms decreasing faster than R =2 (so-called near-zone and induction-
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zone fields) do not contribute to outward power flow at any value of R, since they
have zero time average. [In many texts it is pointed out that these terms make no
contribution to the net energy flow at infinity, obtained by integrating the Poynting
flux over a large sphere of radius R, surrounding the dipole:

S S - nd(area) = 0,
Ro

in the limit Ry = oo. This is also true.] Only the term in S falling off as R 2
contributes to the net rate of electromagnetic energy flow. This term arises from
the so-called ‘radiation zone’’ fields: '

' 1 P a:
E(R,?) = % - %= -
\( ) IreR [(® - R)R — £] dt2p<t > (2.5.7a)
1 s d* R
B(R,t) = ———1[% x — - =
( ) 4me R [ X R] e p<t c> (2.5.7v)
which follow from (2.5.2) when R is so large that
R |dp dp R |d%p
< — | = = — ==
|p| < || ad > = |22 (2.5.8)

In the radiatiqn zone the electric and magnetic fields (2.5.7) are orthogonal to each
other and to R.

The Poynting vector in the radiation zone defined by (2.5.8) follows from (2.5.4)
and (2.5.7):

<[Ear- )T 259

The vector cross product in this equation may be evaluated using the identity

AXx(BXC)=B(A-C)—-C(A-B) (2.5.10)
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Figure 2.4 The polar angle 6 in Egs. (2.5.11) and
(2.5.12) is measured from the dipole axis.

to obtain

R X (x xR) — % X (¥ xR)]

o
X
=5
—
I
—
—_

[(x - R)R — %] x [

= R sin” § (2.5.11)

where 0 is the angle between the dipole axis and the radius vector R. (Figure 2.4).

Thus
.2 2 2
L sin” @ d R
S = R<—_—167r2eoc3R2> [—dt2p<t — ;>] (2.5.12)

which has the angular dependence (or ‘‘radiation pattern’’) depicted in Figure 2.5.
The radiation is greatest in directions normal to the dipole axis (# = w/2), and

- falls to zero in the two directions parallel to the axis (8§ = 0, 7).

no radigtion |
{ dlong dipole axis

-8

“maximum intensity
P at 90° from
dipole axis

t

Figure 2.5 The radiation pattern (sin? ) of a linear electric dipole oscillator. The three-
dimensional pattern is obtained by rotating the two-lobe pattern in the figure about the dipole
(vertical) axis.
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The total rate at which electromagnetic energy flows out from the dipole at
radius R may now be calculated using (2.5.6) and (2.5.12):

271 T
Pwr=R2S dqﬁg ddsinbR -8
0 0

27 T -2 2 2
0 d R
Rﬂde@'@L{— _B
0 ¢ 0 - <167rzeoc3R2 arr P ! c
1 d2 R 2 a2m ks
L _ 8 - 3
167r2(:-oc3 [dt2p<t c>} So dé So b sin” 6

(&) a ol

The rate at which the dipole at the center of our fictitious sphere radiates electro-
magnetic energy is therefore

1\ 2 /[d%\
Pwr = <F€O> F <?> (2.5.14)

* This result is similar to a general (nonrelativistic) formula for the power radiated by a
particle of charge ¢ and acceleration a,

1 2 2.2
Pwr = <—> Zc‘j (2.5.15)

From this formula an estimate can be made of the length of time an oscillator not driven
. by an external field, but simply freely oscillating, can be expected to take.to convert its
oscillation energy to radiation. _

If the radiative ‘“lifetime’” of an oscillator obtained in this way is designated 7, then 1 /7
is the radiation rate, and one finds (see Problem 2.10)

! (2.5.16)

It is interesting that the ad hoc replacement of half the oscillator’s energy (the potential
energy) by half the lowest energy of a quantum oscillator (see Section 4.5) turns (2.5.16)
into a quantum-mechanical formula for the spontaneous emission rate. That is, if we use
smwdx? = (A, /2) to eliminate m from (2.5.16), we find

1 det?w3
4wey  3hc?

1
= (2.5.17)
-

This is the correct quantum-mechanical rate for spontaneous radiative decay, if the oscil-
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lator amplitude x is interpreted appropriately as a coordinate ‘‘matrix element” (see Eq.
(7.6.5)) =

2.6 RAYLEIGH SCATTERING

Using the solutions of Table 2.2, we may write the dipole moment induced in an
atom by a monochromatic plane wave traveling in the z direction as

P
= Z , =
P ¢, IX' N

z

= %a(w)E, cos w<t - §> (2.6.1)

where o (w) is the atomic dipole polarizability, given in (2.3.20). We assume the
atom to be in a dilute host medium such as a gas for which n(w) = 1 is a satis-
factory approximation. We will now apply the results we have obtained for electric
.dipole radiation to the case where p is given by (2.6.1). That is, we will calculate
the power radiated by any atom as a result of its having an oscillating dipole mo-
ment induced by a monochromatic field.

- For the dipole moment (2.6.1) we have

22— —a(w)Bycos o1 - £) (2.62)

According to (2.5.14), therefore, electromagnetic energy is radiated at the rate

4
® 2 z
Pwr = P a*(w)E} cos w<t — E> (2.6.3)

€o

This is the instantaneous power radiated by a single dipole. It has been obtained
by applying the general result (2.5.14) of electromagnetic theory to the solutions
of the coupled Maxwell-Newton equations given in Table 2.2.

Using the fields E and B of Table 2.2 in (2.5.4), we obtain the Poynting vector
[recall in this case we have assumed n(w) = 1]

S = eyc 2E} cos2w<t - %) (2.6.4a)
Therefore
2 2 Z 1
Ejcos?w(t — =) =—|S]| (2.6.4b)
c €C
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and so the power (2.6.3) radiated by the dipole may be written as
4
Pwr = —— a*(w) ISI (2.6.5)
T

The radiation from an atom having an oscillating electric dipole moment goes
off in all directions in accordance with the angular distribution (2.5.12). This means
there is a spatial redistribution or scattering of electromagnetic radiation. The in-
cident plane wave still travels in the z direction, but with diminished amplitude
because of the scattering. The scattering of radiation out of the incident wave is
indicated pictorially in Figure 2.6.

Equation (2.6.5) shows that the power radiated by an atom is linearly propor-
tional to |S |, the rate per unit area at which the field driving the dipole transports
electromagnetic energy. Since Pwr has the dimensions of energy per unit time, the
constant of proportionality in (2.6.5) has the dimensions of an area. This area is
called the scattering cross section, and denoted o(w). It is given by

\ o(w) = %w“ <ﬂ(“’—)2>2 (2.6.6)

47egc

Note that cross section, like polarizability, is a single-atom parameter. If there is
a collection of scattering dipoles, making up a continuous medium, then the cross
section can be expressed in terms of the medium’s index of refraction by the use
of (2.3.22): g[n*(w) — 1] = No(w). Then (2.6.6) becomes

8mw? <n2(w) - 1>2

3c4 47N

o(w) = (2.6.7)

The relation (radiated power) = (scattering cross section) X (field power per
unit area incident on the dipole) means that the radiated power is the same as if
the scattering atom (dipole) had a cross-sectional area o, and all of the incident
field power intercepted by this area were scattered. There is no actual geometrical
object the same size as this cross section; it is merely a convenient measure of the
effectiveness of the scatterer.

By scattering the incident light, the dipoles cause the light beam to be attenuated

- N
incident field // \\\ incident field

attenuated due
scattered to scattering
waves

Figure 2.6 An incident field induces an oscillating dipole moment in an atom, which then
radiates. The dipole radiation field is the field scattered by the atom.
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as it propagates. The degree of attenuation can be calculated as follows. Suppose
there are N atoms (scatterers) per unit volume. According to (2.6.5) and (2.6.6),
each one radiates electromagnetic energy at the rate of, where the intensity I (typ-
ically measured in W /cm?) of the incident wave is defined as the cycle-averaged
magnitude of the Poynting vector:

I(1,2) = lT S:+ |S(r, z)| ar’ (2.6.8a)

where T = 27 /w. Therefore, in the case of a monochromatic plane wave I(t, z)
= I(z). From (2.6.4) we find this intensity to be given by
I= | (2.6.8b)

1 eocl E,

Consider, as in Figure 2.7, an imaginary slab at position z in the medium, drawn
so that it is perpendicular to the direction z of propagation of the wave. Let the
energy density of the wave at the entrance face of the slab be denoted u (z). Asa
result of scattering of electromagnetic radiation into directions of propagation othe;
than z, the energy density u(z + Az) of the wave at the exit face of our imaginary
slab must be less than u(z). We may write

u(z + Az) — u(z) = —N[o(w)I(z)] (Az/c) (2.6.9)

The right-hand side of this expression is simply the number of atoms per unit
volume, times the power scattered by each atom, times the time Ar = Az /c taken
by the wave to cross the slab drawn in Figure 2.7. The approximation (2.6.9.) is
valid provided Az is small enough that I remains relatively constant over the width

* of the slab, so that the same radiated power ¢l(z) may be associated with every

atom in the slab. We divide by Az in (2.6.9) and then take the limit Az.—> 0to
ensure the validity of this approximation. We obtain the differential equation

du _ _ No(w)I(z)

(2.6.10)
dz c

: Figure 2.7 An imaginary thin slab of
z z+ Az ’ width Az in the scattering medium.
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where as usual

d —
du _ u(z + Az) — u(z)
dz  aAz—o0 Az

(2.6.11)

In many contexts in physics it is helpful to recognize that intensity 7 is simply
energy density u times wave propagation velocity. This can be checked in the
electromagnetic case by using the solutions in Table 2.2 to compute the energy
density u [see Problem 2.6] for comparison with the intensity (magnitude of Poynt-
ing vector) obtained in (2.6.4). The result for the case n = 1 is

I(z) = cu(z) B (2.6.12)

A simple analogy to this result is a stream of pellets moving with speed v. If p is

the number of pellets per unit volume, then the *“intensity,” or flux, of the stream
is -

® = pv (2.6.13)

This is the number of pellets crossing a unit area per unit time. In Eq. (2.6.12)
the intensity I and energy density « of the electromagnetic wave play the roles of
® and p, respectively, and the light velocity ¢ plays the role of v.

It follows from (2.6.10) and (2.6.12) that

dl
A ~No(w) I(z) (2.6.14)
The solution to this simple differential equation is

I(z) = I, e~ %" (2.6.15)

This gives the intensity at a distance z into the medium, given the ‘‘initial condi-
tion’” that the intensity at z = 0 is . The initial condition may refer to the actual
entrance to the scattering medium, or merely some convenient reference plane
inside the medium. We have defined

a,(w) = No(w) (2.6.16)

which is called the extinction coefficient due to scattering. The length a,”! is the
distance of propagation for which the intensity decreases by a factor ¢! as a result
of scattering. The relation (2.6.16) provides a general connection between the
density N of scatterers, the cross section ¢ associated with each scatterer, and the
extinction coefficient due to scattering. An expression of the same form as (2.6.15)
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also describes the attenuation of the flux of a beam of particles in a medium of
scatterers.

Using (2.6.7) and (2.6.16), we may conveniently express the extinction coef-
ficient in terms of the refractive index:

a,(w) = <-‘;—’>4 L(:zr—];—l—]j (2.6.17)

Equation (2.6.17) was derived by Lord Rayleigh (J.W. Strutt) in 1899. Rayleigh
scattering is characterized by the extinction coefficient (2.6.17).

¢ There is a conceputal inconsistency in our (and most textbooks’) treatment of attenuation
here and our solution of the Maxwell-Newton equations earlier. Recall that in Table 2.2
we have given the fully exact solutions for the electromagnetic fields E and B propagating

- through a continuous medium of atomic dipoles characterized by a real index of refraction

n(w). The solutions given there show no evidence of scattered lighti or of attenuation of
the incident beam. This is correct. In fact there is no attenuation when a light beam passes
through such an ideal collection of dipoles. .

However, an important assumption of our idealized derivation is usually violated for
atmospheric light propagation. This assumption is that the density of scatterers N is con-
stant. If the density were actually constant, the scattered fields from individual atoms or
molecules would actually cancel out in every direction except the forward z direction, with
the solutions of Table 2.2 as the result. v

When N is not constant in either space or time the side-scattered fields do not cancel
out, and appreciable side scattering can occur, as Rayleigh’s formula predicts. However,
since the assumption of constant N was used in Rayleigh’s derivation [and in ours in the
substitution between (2.6.6) and (2.6.7)], that leaves open the matter of explaining why
(2.6.17) is correct. This is a significant problem of statistical physics, first solved by Smo-
luchowski and Einstein in the first decade of the century, which we need not discuss
further here. *

The frequencies of the scattered and incident fields are equal in Rayleigh scat-
tering. This is an inevitable consequence of the electron oscillator model. The
induced dipole moment oscillates at the frequency of the driving (incident) field,
and therefore radiates at this frequency. Indeed, this feature of Rayleigh scattering
is predicted by any model in which the induced dipole moment is linearly propor-
tional to the imposed field.

The o* (i.e., 1 / ) dependence of the extinction coefficient (2.6.17) for Ray-
leigh scattering means that the amount of scattering increases sharply with increas-
ing frequency. (The refractive index n generally varies much more slowly with
than «*.) Rayleigh used (2.6.17) to explain why the sky is blue and the sunset is
red. When we look at the sky away from the sun on a sunny day, we see light that
has been scattered by air molecules exposed to sunlight. This scattered light is
predominantly blue because the high-frequency components of the visible solar
radiation are scattered more strongly than the low-frequency components. The sun-
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set, however, is reddish because the sunlight has traveled a sufficient distance
through the earth’s atmosphere that much of the high-frequency component has
been scattered away.

Consider the Rayleigh scattering of visible radiation by molecules in the earth’s
atmosphere. Taking A = 6000 A, and n ~ 1.0003 for the refractive index of air
at optical frequencies, we find from (2.6.17) that

a,' =44 x107® Nem (2.6.18)

where N is the number of air molecules in a cubic centimeter. Assuming an ideal
gas at STP, we have N = 2.69 x 10*° (Problem 2.7) and therefore

a,"' =~ 118 km ; (2.6.19)

for the distance in which 6000- A radiation is attenuated by a factor ™! = 37%
at sea level. Rayleigh compared such calculations with astronomers’ estimates for
the transmission of stellar radiation through the earth’s atmosphere. He drew the
important conclusion that scattering of light by molecules alone, without sus-
pended particles (dust), is strong enough to cause the blue sky, which he poetically
called the “‘heavenly azure’’ (see also Problem 2. 12).

This explanation of the blue sky suggests, in fact, that the sky should be violet,
since violet light should be scattered more strongly than blue. One reason the sky
appears blue rather than violet is that the eye is more sensitive to blue. Furthermore

the solar spectrum is not uniform, but has somewhat less radiation at the shorter
visible wavelengths.

2.7 POLARIZATION BY RAYLEIGH SCATTERING

A less obvious characteristic of skylight (in contrast to direct sunlight) is that it is
polarized. This effect, which was observed in 1811 by D.F. Arago, is easily ob-
served with Polaroid sunglasses. The extent of polarization appears to be strongest
from directions near 90° to the direction of the sun from the observer. It has been
observed that bees and certain other insects are sensitive to the polarization of light
and use it for navigation. Human eyes, of course, are not directly sensitive to
polarization. '

To understand the polarization of light by Rayleigh scattering, let us return
again to the electric field (2.5.7a) in the radiation zone of an oscillating dipole.
The unit vector %, defining the direction of the dipole moment, also defines the
polarization of the incident field (propagating in the z direction). R is the unit
vector pointing from the dipole to the point of observation. If we observe the
scattered field at right angles to the ““plane of incidence’’ defined by the directions

of polarization and propagation, we see from (2.5.7a) that it will be polarized in
the x direction, since
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F-RR-—gx=%-§)§—%=-% (2.7.1)

when R = § (Figure 2.8). If instead the incident field driving t.he diPole is polar-
ized in the y direction, there is no scattered field in the y direction, since

(- R)R-§=(5-9)§-9=0 (2.7.2)

The light from the sun is unpolarized. In fact vﬁrtually al'l nonliaser sources,
including fluorescent and incandescent lamps, emit unpplanzedl hght.. In such
sources, thermal energy is converted via collisions into internal atomic energy.
According to the electron oscillator model, this internal energy appears as electfon
oscillations. We may imagine a thermal source of radiation to be a large collection
of dipole oscillators (atoms) which each radiate, independently of one .another, the
power (2.5.14). At any instant the dipole moment of each .atom oscglates' along
some axis, thus radiating a field with a polarization determined by this axis [Eq.
(2.5.7a)]. The total electric field at any frequency is the sum of the i_ield§ from the
individual atoms. This (total) radiated field at a given point has a d1rect10~n d‘eter-
mined by the vector addition of the individual atoms’ ﬁelds. However, this d¥rec—
tion varies rapidly in time. Each individual atom rr.adlates for only a short tlme,
typically about ten nanoseconds, before losing the 1qtema1 energy picked up in a
collision (Problem 2.10). After such an interval a different sub.set (?f atoms con-
tributes to the total field, which will then point in a different dlrectlop. Th.e f'ield
from such a source is ‘‘unpolarized’’ because we cannot detect the rapid variations
of the electric field direction. _

The direction of the dipole moment driven by an unpolarized wave propagating
in the z direction (Figure 2.8) will therefore be varying raPidly in t-he xy plane.
Equations (2.7.1) and (2.7.2) show that the dipole radiaFes in the y direction only
when its oscillation has a nonzero component in the x direction (Figure 2.8), and

X X

inci i incident field | | )
I;?gllg?irz%é‘dd induced dipole polarized induced dipole
dlong x oscillafes along y oscillates
along x along y
/
z ’ i

scattered field in no scattered field

y direction is in y direction

polarized along x

y y

(a) {b)
Figure 2.8 An incident field propagating in the z direction wiFh polarization (a) along x,
in which case the field scattered in the y direction is also polarized along x, and (b) along
y, in which case there is no scattering in the y direction.
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igure 2.10 A birefringent material in which the molecules are aligned along the y axis.

in that case the radiation is polarized in,the x direction. Rayleigh scattering thus
produces polarized light. This explains the polarization of skylight.

The theory of scattering becomes much more complicated when the particle
dimensions are not negligible compared with the wavelength. In this case the light
scattered at 90° is not completely polarized. And as the particle size increases, the

scatiering cross section becomes less sensitive 1o the wavelengih; the radiation
scattered from white light becomes ‘‘whiter” as the particle size increases. This
explains why clouds, consisting of water droplets suspended in air, are white.

uch an experiment was performed by John Tyndall in 1869. Rayleigh (1881)
und that the “*hypo’” (sodium thiosulfate) solution demonstrates the scattering
fects especially well.

should beborne in mind, of course, that the notion of “‘color’’ is a subjective
The theory of color vision has attracted the attention of many physicists,
including Isaac Newton, Thomas Young, H. Helmholtz, J.C. Maxwell, Rayleigh,
id E.H. Land.’ Even now, however, color vision is not completely understood.
though it would be inappropriate for us to explore the subject here, it may be
otthwhile to mention that in dim light we see nearly in ‘‘black and white.”” This
plains, for example, why we do not see the brilliant colors of the Crab nebula
at are apparent in photographs taken with long exposure times. Another example
e night sky itself. It looks black instead of blue because of its low intensity;
photograph taken with a long exposure time shows it to be “‘really’” blue.

2.8 THE TYNDALL-RAYLEIGH EXPERIMENT

All of these features of light scattering may be observed beautifully in a simple
experiment that the reader can perform with readily available materials (Figure
2.9). A few spoonfuls of photographic fixing powder (sodium thiosulfate) are dis-
solved in a beaker or small tank of water. The addition of about 100 ml of dilute
sulfp{ic acid causes small grains of sulfur to precipitate out of solution after a few
minutes. In the initial stages of precipitation these grains are very small. The scat-
tered light has a faintly bluish hue, gradually becoming a deeper blue (the ‘‘blue
sky’’). The scattered light viewed at 90° (Figure 2.9) is observed to be strongly
polarized. The light transmitted through the tank has a yellowish and eventually.a
strongly reddish hue (the ‘‘sunset’’). After several more minutes the scattered light
is not blue but white (‘‘clouds’’), and it is no longer strongly polarized. At this

stage we are observing light scattering from sulfur grains that have grown to a size

comparable to or larger than optical wavelengths. 'BIREFRINGENCE

have tacitly assumed that the elastic restoring force acting on a bound electron
ndependent of the electron displacement x. In general, however, the ‘‘spring
onstant’’ k, may depend on the direction of x, in which case the medium is said
be optically anisotropic. In such a medium the refractive index will be different
different polarizations of the field propagating in the medium. This is called
efringence. All transparent crystals with noncubic lattice structure, such as cal-
',Uquartz, ice, and sugar, are birefringent.

1t is easy to understand how such anisotropy might arise. In particular, imagine
ong, rod-shaped molecule in which the elastic restoring force is different for
ctron displacements parallel and perpendicular to the axis. There will be differ-
refractive indices for different directions of field polarization in a medium in
ich there is some degree of molecular alignment.

Figure 2.9 Experiment demonstrating the effect of particle size in light scattering. In the Consider a birefringent material in which the molecules are aligned along the y
initial stage of precipitation the sulfur particles suspended in sodium thiosulfate solution are axis, as illustrated in Figure 2.10. This preferred direction may be called the optic
small compared with an optical wavelength. The tank takes on a blue color, the light scat- . Waves that are linearly polarized in the x or y directions will propagate with

tered at 90° is strongly polarized, and on the white screen one observes the *‘red sunset.” fferent reftactive indices n, or n,, respectively. That is, a field
After a few minutes the particles have grown larger than a wavelength. Then the tank has .

a cloudy appearance and the light scattered at 90° is no longer strongly polarized.

slide projector

_ dilute acid solution of
sodium thiosulfate

white
screen

.

H. Land, Experiments in Color Vision, Scientific American, 200, May 1959, p. 84.
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E(z, t) = £E; cos (wt — kz)

£E, cos t— ad
0 w< c> (2.9.1)

I

in thei medium will propagate with refractive index n = n if€ =%, orn =n,if
£ = §. For a general linearly polarized wave in which i

=&X + 6§ (2.9.2)

2 2
and €; + ¢, = 1, we have

E(z, t) = ¢,%E, cos w<t - ”LCZ> + €,9E, cos co<t - ﬁLZ> (2.9.3)
A C
If the field

E(0, t) = ¢,RE, cos wt + €, Y Ey cos wt (2.9.4)

Ls incident at the face z = 0 of the material, the field at z =  in the material will
L :

. !
E(l, t) = ¢,%E, cos w<t —~ ”f) + &,§Ey cos w<t -~ M) (2.9.5)
[o4

T'hus the x and y polarization components of the field, since they propagate with
different phase velocities, develop a phase difference

=)
¢(l) = ? (ny - nx) (296)
Therefore we may write (2.9.5) as

E(l, 1) = %E; cos (wt — k) + €,§E, cos [wr — k,I — o(D)] (29.7)

where k, = n.w/c and ¢ (1) [Eq. (2.9.6)] is the phase difference of the x and y
components after a propagation distance [.

This phase difference is used, for instance, in the construction of a quarter-
wave plate. A quarter-wave plate is a sheet of birefringent material of just the right
tthkI.leSS I'that |¢(1)| = 7 /2, i.e., the phase difference between waves linearly
polarized parallel and perpendicular to the optic axis is a quarter of a cycle. In
other words, the optical path difference ! |n, — n,| is a quarter of the waveler; th
under consideration. If light incident on a quarter-wave plate is linearly polarizged
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right-hand left-hand
polarized polarized
y y
X X

(@ ()

Figure 2.11 The x and y components of a circularly polarized field propagating in the z
direction trace out a circle: (a) right-hand circular polarization; (b) left-hand circular po-
larization.

at 45° to the optic axis, so that |e,| = |e, |, then the transmitted field has the form
[Eq. 2.9.7]

1
E(l,t) = —= Eq [% cos (0t — k1) + §sin (ot — kI)]  (2.9.8)

V2

since |e,| = |e, | =1/ N2. The x and y components of this electric field trace out
a circle, as indicated in Figures 2.11 @ and b. In other words, the transmitted field
is circularly polarized. It is called right-hand circularly polarized if E rotates clock-
wise to an observer viewing the oncoming light.® Thus the — and + signs in
(2.9.8) correspond to right- and left-hand circular polarization, respectively.

In general a linearly polarized wave incident on a quarter-wave plate will be
converted to an elliptically polarized wave. Linear and circular polarization are
special cases of elliptical polarization.

Many isotropic media can be made birefringent by the application of an electric
field. Consider, for instance, a liquid consisting of long molecules having per-
manent dipole moments. The existence of a permanent dipole moment implies a
certain asymmetry, namely a preponderance of positive charge at one end of the
molecule, and negative charge at the other. Because of collisions, the molecules
are randomly oriented, and so the liquid will be macroscopically isotropic, and

" will not exhibit birefringence. An applied electric field, however, will tend to align

the molecules, creating an anisotropy and making the liquid birefringent. This
creation of birefringence by an applied electric field is called the electro-optic
effect.

In the Kerr electro-optic effect the induced optic axis is parallel to the applied
field, and the difference in refractive indices for light polarized parallel and per-
pendicular to the optic axis is proportional to the square of the applied field. Kerr
cells of liquid or solid transparent media can be used together with polarizers to

6. This is the convention traditional in optics. It is unnatural in the sense that the right-hand rule
applied to the k vector would suggest the opposite.
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transmit or block light, depending on whether an electric field is applied. Such
“‘light switches’” have many uses in laser technology. (See Section 12.5.)

In certain crystals the induced optic axis is perpendicular to the applied eleciric
field, and the difference in refractive indices for light polarized parallel and per-
pendicular to the optic axis is linearly proportional to the applied field. This elec-
tro-optic effect is called the Pockels effect. Pockels cells have uses similar to Kerr
cells.

In certain crystals the molecules are aligned in such a way that light polarized
in one direction is transmitted, whereas light polarized in the perpendicular direc-
tion is strongly absorbed. Such materials are said to be dichroic. (Some such ma-
terials appear colored in white light because the effect is wavelength-dependent,
whence the term dichroic.) They are used, of course, as polarizers. If a wave
linearly polarized in some direction £ is normally incident on a-dichroic sheet in
which the transmitting direction is %, the transmitted wave will be linearly polar-
ized in the x direction, and will be diminished in amplitude by the factor £ - %.
The intensity is thus diminished by (£ - %)> = cos? ; this is called Malus’s law.
Similarly, unpolarized light incident on the polarizer will be reduced in intensity
by 50%.

The most common types of polarizer are Polaroid filters, invented around 1926
by Edwin Land (the inventor of the Polaroid Land camera). One type of Polaroid
filter consists of a plastic sheet in which are embedded needle-like crystals of di-
chroic herapathite (quinine sulfate periodide). The most common Polaroid used
today is made by dipping a plastic (whose long molecules have been aligned by
stretching) in iodine, which makes the plastic dichroic.

® The dichroic property of herapathite was known long before Land, but the crystals were
very fragile and difficult to grow in sizes large enough to be useful. The essence of Land’s
idea was to embed the tiny crystals in a plastic which was stretched while soft to align them.
The discovery of herapathite is rather interesting. Land writes:” *“In the literature are a few
pertinent high spots in the development of polarizers, particularly the work of William Bird
Herapath, a physician in Bristol, England, whose pupil, a Mr. Phelps, had found that when
he dropped iodine into the urine of a dog that had been fed quinine, little scintillating green
crystals formed in the reaction liquid. Phelps went to his teacher, and Herapath then did
something which I think was curious under the circumstances; he looked at the crystals
under a microscope and noticed that in some places they were light where they were ov-
erlapped and in some places they were dark. He was shrewd enough to recognize that here
was a remarkable phenomenon, a new polarizing material.”’ o

We have assumed in our discussion of birefringence that the optic axis is par-
allel to the surface on which the field is incident. In general there will be a direction
of propagation in which the refractive index is independent of the polarization; this
direction defines the optic axis. (Note that the optic axis is not really a single axis,
but rather refers to two opposite directions within the birefringent material.) The

7. E.H. Land, Journal of the Optical Society of America 41, 957 (1951).
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material may have a single optic axis, in which case it is called uniaxial, (-)r it may
have two optic axes, in which case it is called biaxial. Here we will consider only
the simpler, uniaxial case. o

If the direction of field propagation is not parallel to the optic axis of a uniaxial
crystal, there will be different refractive indices for different field polarizations. In
fact only two types of wave can propagate in a uniaxial crystal, n?mely waves
linearly polarized perpendicular to the plane formed by the optic axis and the di-
rection of incidence, and waves linearly polarized parallel to this plane. Waves of
the first type are called ordinary, whereas those of the second type are-called
extraordinary. Figure 2.12 illustrates what is ‘‘ordinary’’ and ‘‘extraordinary’’
about these waves. In Figure 2.12a, a normally incident field is linearly polarized
in a direction perpendicular to the plane formed by the optic axis and the direction
of incidence. In this case the field simply passes through the crystal in the expected
or “‘ordinary’’ way, i.e., according to Snell’s law. In Figure 2.12b', hov.vever, the
field is linearly polarized parallel to the plane defined by the optic axis and the
direction of incidence. In this case something unexpected or ‘‘extraordinary’’ hap-
pens: the wave is deflected at the boundaries and the rays emergent at the exit face
are displaced with respect to the incident rays. o

This means that if an anisotropic crystal such as Iceland spar (CaCOs,) is laid
over a small dot on a piece of paper, we will see a'double image of the dot. This
phenomenon of double refraction (sometimes called anomalous refraction) was
noted 400 years ago by European sailors visiting Iceland.

The refractive index for ordinary waves is denoted ng, and is independent of
the direction of propagation. The refractive index n,(6) for extraordina%'y waves,
however, depends on the direction of propagation (f) relative to the c?ptlc axis. If
n, denotes the extraordinary index for propagation normal to the optic axis (i.e.,
n, = n,(6 = w/2)), then the following relation holds for ng, n,, and n,(0):

2 -2
1 = cos2 0 s1n20 (2.9.9)
n(0)

Values of ny and n, for different materials are tabulated in various handbooks.
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Figure 2.12 Ordinary (a) and extraordinary (b) waves in a unijaxial birefringent crystal.
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If unpolarized light is incident on a doubly refracting crystal, it is separated into
ordinary and extraordinary waves which are linearly polarized orthogonally to each
other. This splitting of a light beam into two orthogonally polarized beams in
Iceland spar (calcite) was observed by Arago and A.J. Fresnel early in the nine-
teenth century. Since their polarizations are orthogonal, the two beams do not
interfere. This led Young (1817), and later Fresnel, to propose that light waves
are transverse, for the absence of interference could not be explained if light waves
were longitudinal.

2.10 SUMMARY

Equation (2.3.22) relates a property of a macroscopic medium, the refractive in-
dex, to a microscopic characteristic of the medium, the natural oscillation fre-
quencies w; of bound electrons. The latter cannot be calculated with any classical
model. However, this result for the refractive index is a major success of the
-electron oscillator model; as we have shown in Sections 2.4-2.9 it explains some
important general features of optical dispersion. These features cannot be under-
stood solely on the basis of the Maxwell equations without ‘‘atomistic’’ model
assumptions about the medium of propagation.

The classical oscillator model of individual bound electrons was used exten-
sively before the development of quantum mechanics. It was applied by Lorentz
to the theory of nearly all the optical phenomena known at the turn of the century.
Before Lorentz, physicists generally believed that electromagnetic fields were
inextricably associated with continuous distributions of matter. The great contri-
bution of Lorentz was to attribute to the electromagnetic field a truly independent
existence of its own, in which, according to Einstein,

.. .The only connection between the electromagnetic field and ponderable matter
arises from the fact that elementary electric charges are rigidly attached to atomistic
matter. For the latter, Newton’s law-of motion holds.

Upon this simplified foundation Lorentz based a complete theory of all electro-
magpetic phenomena known at the time, including those of the electrodynamics of
moving bodies. It is a work of such lucidity, consistency, and beauty as has only
rarely been obtained in an empirical science.

In later chapters we will deal with concepts like ‘“oscillator strengths’’ and
“‘negative oscillators’” which, though basically of a quantum-mechanical nature,
reflect even by their names the conceptual framework established by Lorentz.

PROBLEMS

2.1  Write out the x component of the left and right sides of the vector identity
given in (2.1.8) and show that they are equal. Remember that (V x V ) =
aV,/dy — aV,/dz for any vector V.

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9
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Verify by substitution in (2.1.14) that the z component of E given in
(2.1.26¢) is a solution of the free-space wave equation, assuming that I, m,
n obey (2.1.28).

Show that the condition given in (2.1.27) is necessary if the electric field
solutions given in (2.1.26) are to be ‘‘transverse,’’ i.e., if they are to satisfy
V - E = 0 as assumed in (2.1.12). Note that (2.1.27) implies that only two
of the amplitudes A,, 4,, 4, can be chosen independently. This is the reason
a transverse field has only two independent polarizations.

Show that the formulas for mode densities dN, and dN,, given in (2.1.30),
are related through the identity » = ¢/\.

(a) Show that the refractive index of a mixture of gases is
n(w) = 2 finy(w)

where n;(w) is the index of the ith species and f; is its fractional con-
centration (number of atoms of species i divided by the total number).

(b) Using the refractive indices no, = 1.000272 and ny, = 1.000297 of
STP oxygen and nitrogen at 5890 A, estimate the refractive index of
STP air at this wavelength.

Consider a medium with n = 1. The Poynting vector S = E X H is asso-
ciated with electromagnetic energy flow. Compute S from the solutions for
E and B = ugH given in Table 2.2. Also compute the electromagnetic
energy density # = 3(eoE? + B*/up). By comparing S and u, determine the
velocity of energy flow in this case.

Verify that the number of molecules per cubic centimeter in an ideal gas at
standard temperature and pressure is about 2.69 X 10%.

Assume that in the earth’s ionosphere the refractive index for 100 MHz

radio waves is 0.90, and that free electrons make the greatest contribution

to the index.

(a) Estimate the number of electrons per cubic centimeter.

(b) Why is the contribution of positively charged ions to the refractive in-
dex much smaller?

(a) Choose an AM and an FM radio station in your area and compare their
frequencies with the plasma frequency of the ionosphere.

(b) Why are automobile antennas oriented vertically rather than horizon-
tally?
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2.10* Consider the electron oscillator model for the case in which there is no field
acting on the atom. Suppose that at z = 0 an electron is given the displace-
ment X, from equilibrium, and the velocity v,.

(a) Show that the electron coordinate x (¢) is given by

\2
x(t) = xg cos wot + —sin wot
0

(b) What is the total (kinetic plus potential) energy of the electron?

(c) Using the formula (2.5.14), derive an expression for the rate at which
the oscillating electron radiates electromagnetic energy. Give the rate
averaged over times long compared with the period of oscillation.

(d) Show that the electron can be expected to radiate away most of its en-
ergy in a time

T = 47e <2—ezﬂ2)>_l
3mc?
This is the classical picture of ‘‘spontaneous emission,”” which we con-
sider in Chapter 7.
(e) Estimate numerically the ‘‘radiative lifetime’” 7 found in part (d) for
the case of an electron oscillating at an optical frequency »y( =wg/27).

2.11 Show that the scattering cross section for radiation of frequency w much
greater than the natural oscillation frequency w, is given by the Thomson
formula

87 , 8« e\
ol >>00) ~ 30 =T\ freom

where r, = & /4wegmc? is called the ““classical electron radius.”” What is
the magnitude of r,?

2.12 A typical He-Ne laser operating at 6328 A contains about five times as
much He as Ne, with a total pressure of about one Torr. The length of the
gain cell is about 50 cm. Estimate the fraction of laser radiation intensity
lost due to Rayleigh scattering in passing a billion times through the gain
cell. (Note: For STP Ne the constants in (2.4.9) are 4 = 6.66 X 107> and
B =24 x 107" cm®.) This illustrates the fact that Rayleigh scattering is
usually very weak in gas laser media.

*Starred problems are somewhat more difficult.

3 CLASSICAL THEORY OF
ABSORPTION

3.1 INTRODUCTION

Most objects around us are not self-luminous but are nevertheless visible because
they scatter the light that falls upon them. Most objects are colored, however,
because they absorb light, not simply because they scatter it. The colors of an
object typically arise because materials selectively absorb light of certain frequen-
cies, while freely scattering or transmitting light of other frequencies. Thus if an
object absorbs light of all visible frequencies, it is black. An object is red if it
absorbs all (visible) frequencies except those our eyes perceive to be “‘red’’ (wave-
lengths roughly between about 6300 and 6800 A), and so on.!

The physics of the absorption process is simplest in well-isolated atoms. These
are found most commonly in gases. White light propagating through a gas is ab-
sorbed at the resonance frequencies of the atoms or molecules, so that one observes
gaps in the wavelength distribution of the emerging light. On a spectrogram these
gaps appear as bright lines on the dark, exposed background. The gaps, shown as
lines in Figure 3.1, correspond to the absorption of sunlight by the atmosphere of
the sun before the light reaches the earth. The absorbed energy is partially con-
verted into heat (translational kinetic energy of the atoms) when excited atoms (or
molecules) which have absorbed radiation collide with other particles. The ab-
sorbed radiation is also partially reradiated in all directions at the frequency of the
absorbed radiation. This is called resonance radiation, or resonance fluorescence.
When the pressure of the gas is increased, collisions may rapidly convert the ab-
sorbed radiation into heat before it can be reradiated. In this case the resonance
radiation is said to be quenched.

Most atoms have electronic resonance frequencies in the ultraviolet, although
resonances in the visible and infrared are not uncommon. Sodium, for instance,

- has strong absorption lines in the yellow region at 5890 and 5896 A, the Fraun-

hofer ““D lines,’” and their position is indicated in Figure 3.1.

Electronic resonances in molecules also tend to lie in the ultraviolet. We have
“‘white’” daylight because the atmosphere, consisting mostly of N, and O,, does
not absorb strongly at visible frequencies.

In molecules the separate atoms act approximately as if they were connected to
each other by springs, so that entire atoms vibrate back and forth. Atoms are of

1. The principal features of the electromagnetic spectrum for our purposes are summarized in Table
3 inside the cover of the book.
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Figure 3.1 Absorption lines of the sun’s atmosphere. The Fraunhofer D lines of sodium at
5890 and 5896 A are not resolved in this sketch.

course much more massive (by 10°-~10° times) than electrons, and the natural vi-
brations of molecules are consequently slower. We can estimate, on the basis of
this mass differesice (Problem 3.1), that molecular vibration frequencies should lie
in the infrared portion of the electromagnetic spectrum.

A molecule as a whole can also rotate; the resonance frequencies associated
with molecular rotations lie in the microwave portion of the spectrum. Molecules
therefore typically have resonances in the ultraviolet, infrared, and microwave
regions of the spectrum.

Absorption in liquids and solids is much more complicated than in gases. In
liquids and amorphous solids such as glass, the absorption lines have such large
widths that they overlap. Water, for example, is obviously transparent in the vis-
ible, but absorbs in the near infrared, i.e., at infrared wavelengths not far removed
from the visible. Its absorption curve is wide enough, in fact, that it extends into
the red edge of the visible. (Figure 3.2) The weak absorption in the red portion of

visible

]
2000 4000 6000
MA)—

Figure 3.2 Absorption coefficient of water.
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the visible spectrum explains why things appear green when one is sufficiently
submerged under water.

A broad absorption curve covering all visible wavelengths except those in a
particular narrow band is characteristic of the molecules of a dye. The absorbed
radiation is converted into heat before it can be reradiated. Such broad absorption
curves and fast quenching rates require the high molecular number densities of
liquids and solids.

In metals some of the atomic electrons are able to move freely about under the
influence of an electromagnetic field. The fact that metals contain these *‘free’’
electrons explains, of course, why they are good conductors of electricity. In the
Jree-electron approximation we may apply the dispersion formula (2.4.12). The
plasma frequency «w, for metals is usually in the ultraviolet (Problem 3.2). Thus
visible frequencies (w < w,) cannot penetrate into the metal. They are completely
reflected, just as AM radio waves are reflected by the ionosphere. This strong
reflection gives metals their shine. In a metal like gold there is also absorption,
associated with the electrons that remain bound to atoms, and it is this that gives
the metal a characteristic color.

In a solid that is a good electrical insulator, the electrons are tightly bound, and
consequently the natural oscillation frequencies are high, typically corresponding
to wavelengths less than 4000 A. An insulator, therefore, is usually transparent
in the visible but opaque in the ultraviolet. In semiconductors the natural oscilla-
tion frequencies are smaller. Silicon, for example, absorbs visible wavelengths (it
is black), but transmits radiation of wavelength greater than one micron (1 micron
=1 pm).

Lattice defects (deviations from periodicity) can substantially modify the ab-
sorption spectra of crystalline solids. Ruby, for instance, is corundum (ALL,O3)
with an occasional (roughly 0.05% by weight) random substitution of Cr*? ions
in place of A1*3. The chromium ions absorb green light and thus ruby is pink, in
contrast to the transparency of pure corundum.

The variety of natural phenomena resulting from the selective absorption of
certain wavelengths and the transmission of others is too broad to treat here. We
mention only one important example, the ‘“greenhouse effect.’’* Visible sunlight
is transmitted by the earth’s atmosphere and heats (by absorption) both land and
water. The warmed earth’s surface is a source of thermal radiation, the dominant
emission for typical ambient temperatures being in the infrared. This infrared ra-
diation, however, is strongly absorbed by CO, and H,O vapor in the earth’s atmo-
sphere, preventing its rapid escape into space. Without this effect, the earth would
be a much colder place. An increased burning of fossil fuels could conceivably
enhance the greenhouse effect by increasing the level of CO, in the atmosphere.

2. The term “‘greenhouse effect”” is actually a misnomer, originating in the observation that the glass
in a greenhouse, which is transparent in the visible but opaque to the infrared, plays an absorptive role
similar to that of CO, and H,O in the earth’s atmosphere. This effect, however, does not contribute
significantly to the warming of the air inside a real greenhouse. A real greenhouse mainly prevents
cooling by wind currents. This point was demonstrated experimentally by R. W. Wood (1909), al-
though the contrary misconception persists even among scientists.
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3.2 ABSORPTION AND THE LORENTZ MODEL

The strength of an electromagnetic field will be reduced in transit through a ma-
terial medium if the atoms (or molecules) of the medium can absorb radiant en-
ergy. More commonly than not, in a wide variety of materials, absorption can be
explained by the assumption that the Lorentz electron oscillators introduced in
Chapter 2 are subject to a frictional force. The origin of a “‘frictional’’ force is
itself a subject for discussion, which will be found in Section 3.9. For the moment,
however, we will take a frictional force for granted, and explore its consequences.
We simply amend the Newton force law (2.2.18) to read

dZ
mF = eE(R, t) - kSX + Fftic . (32.1)

and we make the simplest assumption compatible with the idea of frictional drag:

dax
o= —bv = —b— 3.2.2
anc bv bdf ( )

Then the Newton equation of motion (2.3.7) for an electron oscillator in a linearly
polarized monochromatic plane wave takes the form

d*x dx e
2 + 28 7 + wix = & ~ E, cos (ot — kz) (3.2.3)

where for later convenience we have defined

As in Chapter 2 we have introduced the natural oscillation frequency

o = <ﬁ>1/2 (3.2.4)

m

associated with Lorentz’s elastic force.
If there is no applied field, Eq. (3.2.3) becomes

d*
=t 25 + wix =0 (3.2.5)
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L =L

Figure 3.3 An LRC circuit. The charge on the capacitor
obeys the equation of motion (3.2.6) for a damped oscillator.

This is the equation describing a damped oscillator. A well-known example is an
LRC circuit (Figure 3.3), where the charge g on the capacitor satisfies the equation

d’q Rdg 1
— +t=-—+-—g=0 2.
a tra rc? (3.2.6)

In this case the natural oscillation frequency and the damping rate are determmed
by the fundamental parameters of the circuit:

_ (L)
Wy = (LC) (3.2.73)_
and
R
B = 5L (3.2.7b)

The solution of the differential equation (3.2.6) is
g(t) = (A cos wht + B sin wht) e ™ (3.2.8a)

where

wh = (0 — %)/ (3.2.8b)
Under most conditions of interest the oscillator will be significantly underdamped
[see Eq. (3.3.10)] and we can replace w} by wy. Since (3.2.6) is a second-order
linear differential equation, its solution has two constants of integration which are
determined by the initial conditions for g () and dq(t)/dt. We have denoted these
two constants by A and B.

If the LRC circuit is driven by a sinusoidal emf (Figure 3.4),

V(t) = Vycos (wt — 6) (3.2.9)
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MY
T
L c

() "7 Figure 3.4 An LRC circuit with a sinusoidal emf. The charge

i on the capacitor obeys the equation of motion (3.2.10) for a
V(t) =Vg cos (wt-6) sinusoidally driven, damped oscillator.

then q satisfies the forced-oscillator equation

d2

v,
-+ 23 waqg = —2 cos (wr — 0). (3.2.10)

L

where wo and 3 are given by (3.2.7). This is just a scalar version of the electron
oscillator vector equation (3.2.3), with L corresponding to the electron’s mass/
tharge ratio

L==2 (3.2.11)
e
and 6 corresponding to the field phase at the position of the atom:
2
0=k = —;\TE (3.2.12)

In contrast to the homogeneous solution (3.2.8a), which decays to zero, the
solution to the forced-oscillator equation (3.2.10) is a steady sinusoidal oscillation
with an amplitude depending on w and w,. The amplitude has a maximum when
w = w,, and one says that the circuit of Figure 3.4 exhibits a resonance. From
(3.2.72) we see that this resonance condition is met when the capacitance is

C= (3.2.13)

w’L
When the resonance condition is approached by tuning the capacitance to the res-
onance value (3.2.13), the amplitude of the oscillating current in the circuit in-
creases dramatically, as shown in Figure 3.5. This resonant enhancement is used
in simple radio receivers, where a variable capacitor permits tuning to various
broadcast frequencies.

The interaction of an atom with a monochromatic field is similarly enhanced
when

w = w (3.2.14)
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Figure 3.5 The amplitude of the oscillating current in an LRC circuit with emf (3 .2.9).
The current oscillation is at the driving frequency w, and has maximum amplitude when
the resonance condition w = wy = (1 /LC)'/? is satisfied.

i.e., when the frequency of the field coincides with a natural oscillation frequency
of a bound electron. This enhancement of the interaction is already implied by our
result (2.3.14b) for the refractive index. However, that result is obviously unde-
fined if w = wy. A frictional force in the electron oscillator model allows us to
understand formulas like (2.3.14b) even for w = wy, while also providing the
physical mechanism for the absorption of electromagnetic energy.

3.3 COMPLEX POLARIZABILITY AND INDEX OF REFRACTION

The equation (3.2.3) for the electron oscillator with damping is most easily solved
by first writing it in complex form:

d2

d[ ZB-'—+(.00X=§

2 By e — ) (3.3.1)
m

where we follow the convention of writing Ey cos (wt — kz) as Ey e ~(@* =%,
This means that x(z) in Eq. (3.3.1) is also regarded mathematically as a complex
quantity in our calculations, but only its real part is physically meaningful. In other
words, we may defer the process of taking the real part of (3.3.1) until after our
calculations, at which point the real part of our solution for x(z) is the (real)
electron displacement. This approach is standard in solving linear equations, but
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there are pitfalls that can arise in nonlinear problems. [See Chapter 17, where
modifications of Eq. (3.3.1) are used in an introduction to nonlinear optics.]
We solve (3.3.1) by temporarily writing
x(t) =ae v~ k) (3.3.2)

and after inserting this in (3.3.1) we obtain
(—0? — 2iBw + w)a = é%Eo (3.3.3)

Therefore the assumed solution (3.3.2) satisfies Eq. 3.3.1)if

_ —i‘.(e/m)Eo
a—w2~w%+2i6w

(3.3.4)

and the physically relevant solution is therefore

A E —i(wt — k2)
x(¢) = Re <8(:/%’"_) w‘)f_ s > (3.3.5)

Note that (3.3.5) actually gives only the steady-state solution of (3.3.1). Any
solution of the homogeneous version of (3.3.1) can be added to (3.3.5), and the
total will still be a solution of (3.3.1). The homogeneous version is

2
d Xhom dxhom
dar* dt

+ w%Xhom = O (3.3-6)

and its general solution is an obvious vectorial extension of (3.2.8a):
Xpom = [A cos wht + B sin whr] e (3.3.7)
where again
wh = (w03 ~ 82)"* = w, (3.3.8)

We will usually neglect the homogeneous part of the full solution to (3.3.1).
This is obviously an approximation. The approximation is however an excellent
one whenever

t>>1/8 (3.3.9)
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ponent (3.3.7) because it makes only a short-lived transient contribution to the
solution.

Even though the homogeneous damping time, or lifetime 7o = 1/8, is very
short, it is not the shortest time in the problem. Typically the oscillation periods
T =27/wand T, = 27 /w, associated with the natural oscillation frequency cw,
or the forcing frequency w are very much shorter. In the case of ordinary optically
transparent materials such as atomic vapors, glasses, and many crystals and lig-
uids, both wg and w are typically in the neighborhood of 10’5 sec™", and B falls in
a wide range of much smaller frequencies:

B = 10°-10" sec™! << wy, w (3.3.10)

Relations (3.3.9) and (3.3.10), taken together,' imply that times of physical interest
must be much longer than an optical period:

t>> B> wy!, ot (3.3.11)

That is, steady-state solutions of (3.3.1) are valid for times that are many periods
of oscillator vibration (7, = 27 /w,) and forced vibration (T = 27 /w) removed
from ¢ = 0, but they cannot be used to predict the oscillator’s response within the
first few cycles after # = 0. This is, however, a restriction of no real significance
in optical physics, as it is equivalent to

t >> 107" sec (=1073 ps) (3.3.12)

This is a time span one or two orders of magnitude smaller than can presently be
resolved optically.

The steady-state solution (3.3.5) is very close to the solution (2.3.8) for the
undamped oscillator. It implies that the electric field induces in an atom a dipole
moment p = ex, or p = L, ex; in the case of many electrons: '

2 E —i(wt — kz)
P =Re <ée— 0 (3.3.13)

mwy — w? — 2iBw

or

o

e’ i(wt ~ k) é 1
= Re | §—E, ¢!« ~
P < m ¢ i=1w} — w? — 2iij>

The real part can be found explicitly to be

N <(w% — w?) By cos (wt — kz) + 2BwE, sin (wf — kz)
m

=2
P (w3 — wz)z + 43202

> (3.3.14)

writh o fnrraonandine avaraccinn far a meliialantena axratasa
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Because of the frictional damping (i.e., because 8 # 0) the dipole moment no
longer oscillates completely in phase with the electric field as it did in (2.3.8). The
new term proportional to sin (wf — kz) signifies the existence of a phase lag in the
dipole response. Thus there is no single real polarizability coefficient that can be
identified as the ratio of the dipole moment and the electric field strength.

It is possible nevertheless, and generally very convenient, to introduce a com-
plex polarizability. This is done by recognizing that (3.3.2) can be used to define
a complex dipole moment p:

p=ex =ceaeg &~k (3.3.15)

The complex polarizability « is defined by the relation between complex moment
and complex field:

P = a(w)$E, e~ ~ & (3.3.16)

In the presenfcase, by comparing (3.3.13) and (3.3.16) we easily identify the
complex polarizability of a Lorentzian atom to be

e*/m

@) — w? ~ 2iBw
2

a(w) =

e wi — w? + 2ifw

= — (3.3.17)
m (wf — w2)2 + 48%w>
or in the case of many electrons,
4 2
-y e’/m
a(e) =1 (.o]2 - w? - 2iB;w
Z 2 0?4 2iB;w
=S —1 — (3.3.18)
=1 (o] — w?) + 487w

Given the complex polarizability (3.3.17) or (3.3.18), the complex polarization

density is
P = Np = Na(w) £E, e '« ~ # (3.3.19)

Using this polarization density in the wave equation (2.1.13), together with the
complex form of the assumed solution (2.3.1), we obtain

2
< —K + “’—2> g By e it — k)
c

2
w Na(w) 2w  _—i{wt — kz) /5 2 An\

3.3 COMPLEX POLARIZABILITY AND INDEX OF REFRACTION 75

Therefore k must satisfy the dispersion relation

k2=“’—22<1+N°‘—(‘°)>

C €y

w2

= %5 (), (3.3.21)

just as in Eq. (2.3.13).
In this case, because a(w) is complex the refractive index is also a complex
number:

Ne?/me

2 0

=1+

n(w) w5 — w? — 2iBw

Ne?  w§ — o® + 2ifw

mey (w3 — w2)2 + 48%w?

=1+

il

[ne(w) + iny ()]’ (3.3.22)

The most important consequence of these results is that the electric field in the
medium behaves differently from the field discussed in Chapter 2 because n(w) is
now complex:

E(z,t) = 8Ey e/ ~ k)
— éEO e—iw[t—n(w)z/c]
= £E, e~ [n(@lez/e ,—iw{t—Inr(w)lz/c} (3.3.23)
Note that E(z, ) is no longer purely oscillatory. Due to n; (w), the field decays
with increasing distance of propagation. Since the intensity is proportional to the

square of the (real) electric field [recall Eq. (2.6.4) and (2.6.8)], the intensity
shows exponential decay with z:

I,(z) = L,(0) (e—[nl(w)]wz/c)z = [ ¢4 ' (3.3.24)
where we call a(w) the absorption coefficient or extinction coefficient:

al(w) 2[n,(co)] w/c

2Ne? Bjw?
= X — (3.3.25)
€MC J (0] — 0?) + 4ffw

As in (2.3:23) we have used n =~ 1. This is a very important result, and we will
return to it shortly.
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real index of refraction ng(w)

Figure 3.6 Anomalous dispersion curve for a collision-broadened absorption line.

plex refractive index is therefore what would ordinarily be called the “‘refractive
index.”” This refractive index is plotted versus frequency in Figure 3.6. On the
low-frequency side of each resonance frequency, ng(w) increases with increasing
frequency, i.e., we have ‘‘normal dispersion’ (Section 2.4). However, when o
gets within 8; of w;, ng(w) begins decreasing with increasing frequency. This
decrease continues until « is more than §; from w; on the high-frequency side,
whereupon it again increases with increasing frequency. Because most media show
normal dispersion at optical frequencies, the negative slope of the dispersion curve
near an absorption line was historically termed anomalous dispersion.

® Anomalous dispersion was observed by R. W. Wood in 1904. Wood studied the disper-
sion of light at frequencies near the sodium D lines (5890 and 5896 A). The basic idea of
Wood’s experiment is sketched in Figure 3.7. Light enters a tube in which sodium vapor
is produced by heating sodium. The vapor pressure decreases upwards in the tube, so that
for normal dispersion the light would be bent downward, in the direction of greater density

Vi sodium vapor spectroscope

e 0>«E@4
) { flames A

sodium J 0 +—

Bunsen burner RW. Wood

Fioure 3.7 One of R. W. Wood’s experiments on anomalous dispersion in sodium vapor.
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and refractive index. The vapor thus acts as a kind of prism. The light emerging at the other
end of the tube is focused onto the entrance slit of a spectroscope. Wood writes:

On heating the tube, the sodium prism deviates the rays of different wave-length
up or down by different amounts, curving the spectrum into two oppositely directed
branches. The spectrum on the green side of the D lines will be found to bend down
in the spectroscope, which means that the rays are deviated upwards in passing through
the sodium tube, since the spectroscope inverts the image of its slit. This means that
this phase velocity is greater in the sodium vapor than in vacuo, or the prism acts for
these rays like an air prism immersed in water. The red and orange region is deviated
in the opposite direction; these rays are therefore retarded by the vapor.

In other words, the refractive index on the low-frequency side of resonance was observed
to be greater than unity, whereas on the high-frequency side it was less than unity. This is
the behavior shown in Figure 3.6. In fact Wood’s measured curve of refractive index versus
frequency showed exactly the ‘‘anomalous dispersion’” form predicted by the electron os-
cillator model.

3.4 POLARIZABILITY AND INDEX OF REFRACTION NEAR A
RESONANCE '

Most of the time we will be primarily interested in the response of the dipoles that
are very nearly resonant with an applied field. These dipoles will usually be a small
minority of the dipoles present. The sharpness of their resonant response (recall
Figure 3.5) makes them particularly important. However, the other dipoles in the
far off-resonant ‘‘background’’ can be so numerous that they also make a signifi-
cant contribution to the polarizability and index of refraction, and we cannot over-
look them. .

Equation (3.3.18) shows that the polarizability is additive over all dipole re-
sponse frequencies. Thus we can write

a(w) = a(w) + o (w) (3.4.1)

where «;, and «, are the contributions from ‘‘background’” and ‘‘resonant’’ di-
poles, respectively. The background dipoles may reside in an actual host material,
in which the atoms with the resonant dipoles are embedded, or they may be dipoles
associated with nonresonant oscillations in the same atoms as the resonant dipoles.
In either event, the relations (3.4.1) and (3.3.21) imply

n2(0) = 1+ ;I—Z?a,,i(w) + Ij—ora,(w) (3.4.2)

where we have indicated a sum over all background species.
- The first two terms in (3.4.2) determine n,(w), the index of refraction of the
hackoronnd or host material. Thus we will write
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N,a,(w)
€0

wita) (1 + Reecle))

’15(0’) €

n*(w) = nj(w) +

i

n2(w) <1 + N—Oi“’—)> (3.4.3)
es(w)

where €, = nje, is the dielectric permittivity of the background. If the resonant
atoms are present in a monatomic beam, then the background material is vacuum
or nearly so and the background contributions can largely be ignored. Even in an
atomic vapor n, can be taken to be unity to three or four significant figures. How-
ever, in laser physics, the background material is frequently a solid or liquid. For
example, the ruby laser operates because of dipoles associated with chromium jons
thinly dispersed throughout a solid lattice (the crystal called corundum), and the
dye molecules of a dye laser are dissolved in a liquid solvent (for example ethanol).
Then n, is significantly different from unity, typicaily in the range 1.3-2.0. We
will write n,, in place of n, (w) hereafter because the resonances of the background
are typically in the infrared or ultraviolet and 7, is effectively constant at optical
frequencies. '

The resonant dipoles do not make a correspondingly large contribution, since
they are usually present in such small concentrations. The concentration of the
chromium ions in ruby, for example, may be only 10'° per cm® or even less, much
smaller than typical solid densities. As a consequence the last term in (3.4.3) is
typically much smaller than unity. Then the total index of refraction can be ex-
pressed compactly as follows:

n(w) = ”b/<1 + L"r(“’_)>l/2

€p

ny + Neo(@) (3.4.4)
2n6
where we have again used ¢, = nle¢, after expanding the square root and keeping
only the first term in the binomial series (1 + x)'/% = 1 + x/2 + x2/8 + - - -.
Now we must consider what we mean by ““near to resonance.’” Note in (3.3. 17
that when 8 = 0 the imaginary part of o(w) vanishes and the real part reduces to
(2.3.10). In any event, if w is far enough from the resonance frequencies w;, we
can put 8 = 0 without affecting the result appreciably. It should be clear then that
“far from resonance’ is only a relative term, relative to the damping coefficient
. For any resonance frequency w;, then, ““far from resonance’’ means

lo; — 0] >> (3.4:5a)
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and ‘‘near to resonance’’ means

lo; — 0] = 6 (3.4.5b)

A significant contribution to o (w) can come from a resonance if the associated

B is small enough. Suppose there is one frequency w; = wg close enough to w to
satisfy (3.4.5b) and all others satisfy the off-resonance condition (3.4.5a). For
clarity we will label the resonant damping coefficient 8 without a subscript. Then
we can write

()_32 1
e T m ek — w? — 2iBw

The resonant part of a(w) can be written in a still simpler form if w is close
enough to wy to justify the approximation

lwo - w| << w, wy (3.4.6)

which is always guaranteed in practice whenever the earlier approximation
|wy — w| = Bis valid. In this case we can write

wy — w? = (0 + @) (0 ~ ) = 20(wy — @), (3.4.7)
and under this condition we have

e*/2mw

S (3.4.8)

o (@) = —

When the field frequency w is far removed from all the resonance frequencies
w; of the medium, the complex polarizability (3.3.17) reduces to the real polariz-
ability (2.3.10). In this case the refractive index predicted by the electron oscillator
model has been discussed in Chapter 2. For frequencies w near to any of the wj,
however, the friction coefficient 8 becomes important. For example, it is just be-
cause 3 is not zero that the refractive index does not become infinite whenever
= wy, as is (erroneously) predicted by (2.3.14).

The real and imaginary parts of the index of refraction can now be identified
easily, using (3.4.8) for «, (w), and we find

Ne? Wy —

dnpreome (o, — w)° + B2

np(w) = npp + (3.4.9)

Ne? 8

Anpgeamo (wy — w)° + B2

(3.4.10)

n(w) = ny +




80 CLASSICAL THEORY OF ABSORPTION

Here we have written nyr and n,,; for the real and imaginary parts of n,. Also we
have assumed 7,z >> n,. Finally, by comparison with (3.3.25) and (3.4.10), we
obtain the absorption coefficient due to the resonance frequency wg:

a(w)

2n;(w) w/c
Ne? B

2nppeome (g — co)2 + pB?

= a,(0) + (3.4.11)

where a,(w) = 2n,; w/c is the background absorption coefficient.

3.5 LORENTZIAN ATOMS AND RADIATION IN CAVITIES

The Newton-Lorentz equation for the response of an atomic dipole to an applied
radiation field was given in (3.2.3) under the assumption that the radiation took
the form of a traveling wave. That is, in complex notation, the electric field was
assumed to have the form

E(z, 1) = §Eye i — 1 (3.5.1)

This is not appropriate for dipoles in cavities, where the electric field takes the
form of a standing wave:

E(z,t) = £E, sink,z e ™" (3.5.2)
where
k=k,=nr/L, n=12,3,... (3.5.3)

as we indicated in Eq. (1.3.2) and derived in Section 2.1.

In this section we will examine the polarizability of atoms exposed to a stand-
ing-wave field, and the radiation emitted by these atoms into the cavity. The prin-
cipal consequences are a new expression for the relation between k and w and the

-discovery that a classical laser of Lorentz dipoles can’t work.

In free space [recall (2.3.13)] we specified w and used the coupled Maxwell-
Newton equations to find k = k(w), and this dispersion relation defined the index
of refraction: n(w) = k(w) ¢/, as in (3.3.21). In a cavity, we specify the cavity
length L which first determines the wave vector k = k, = nw /L [recall (1.3.2)],
but not the frequency w. We will use the coupled Maxwell-Newton equations to
find w = w(k,) # w,. That is, we will find that the presence of dipoles in the
cavity will bias w, the actual oscillation frequency of the field, away from the
natural frequency of the cavity mode, w, = nwc/L.
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First we rewrite (3.2.3) using (3.5.2) and obtain

d2X dx € . —iw
=+ 28 -t wix = § ;En sin k,z e (3.5.4)

‘ ~ The solution of this equation is the obvious analog of (3.3.2):

X = asink,z e™™ (3.5.5)

where the amplitude a can be found easily by substitution into (3.5.4). It satisfies
(3.3.3) exactly. In other words the atomic polarizability o (@) remains as derived
in (3.3.17), even though the atoms are in a standing wave.

Next we determine the field amplitude. The appropriate Maxwell wave equation
for a cavity is the same as (2.1.13), except that cavity losses can be included by
adding an ohmic current J = ¢E to the right side of (2.1.4). Then we obtain

92 o 8 1 92 1 9?2

Here the second term represents the effect of ohmic losses, such as would be due
to a finite conductivity ¢ (Problem 3.3). This is a common method for modeling
cavity losses in laser theory.

The polarization is defined to be P = Nex, as before, so we can use (3.5.5) to
evaluate the derivatives on the right side of (3.5.6) and use (3.5.2) for computing
the derivatives on the left side. After differentiating we can cancel the common
factor £ E, sin k,z e ™" on both sides to get:

w29 (e 2 (e __Ne/em
" N c c) wp — w? — 2ifw

Now we use k, = w,/c, and the near-resonance approximation (3.4.7) twice:

w0y — w? = 2w(wy — ) (3.5.7a)
w? — 0= 2w(o — w,) (3.5.7b)

to get

_ Ne* wy— w + iB
2¢p deom (wy — w) + B2

€
!

=€

+
|
I

=10 +ig)c (3.5.8)
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where we have defined g and § as abbreviations for:

Ne 2
g=——0 B (3.5.9)
2eome (g — )" + B2
and
_ Ne2 Wy — W
2eome (w, — w)2 + B2
g(wy — @)
== 3.5.10
5 ( )

We note immediately that all reference to the field amplitude has dropped out in
the step from (3.5.6) to the solution (3.5.8), as it did in the similar step between
Egs. (3.3.20) and (3.3.21). What remains is the consistency condition (3.5.8) on
the parameters of the interaction. That is, (3.5.8) is the dispersion relation for the
cavity.

Let us now solve for g and 6. By matching imaginary parts of (3.5.8) we quickly
determine :

g = 0/ (3.5.11)

Next we look at the real parts of (3.5.8). With the aid of (3.5.10) we find the
simple relation

w, — w =" (0 — ) (3.5.12)

We can interpret this second relation as a condition on the oscillation frequency
w. Note that if w is below the cavity frequency w,, the left side of (3.5.12) is
positive and the right side shows that w must then lie above the atomic dipole
frequency wy. Conversely, if w is above w,, then it must be below wq. In other
words, no matter whether wg > w, or w, > wy, the operating frequency lies be-
tween the cavity frequency and the dipole frequency. This is called frequency
pulling; the interaction with the atomic dipoles pulls the electric field frequency
away from the free-space cavity frequency and toward the dipole frequency. An
explicit solution of (3.5.12) is

— Bwn + (gC/Z) Wo
B+ gc/2

~ w, + f%(wo-— w) (B> gc/2) (3.5.13)
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It is possible to give a physical interpretation to the equation for g as well. If
we were to allow E, in Eq. (3.5.2) to be time-dependent, then upon substitution
into Maxwell’s wave equation (3.5.6) we would obtain a differential equation for
E, (¢) instead of the consistency equation (3.5.11). We would find that E, (¢) grows
exponentially in time if g > ¢/¢yc. Thus gc is the classical gain coefficient for
the interaction of radiation with atomic dipoles in a cavity (Problem 3.4).

We could go on and formulate immediately a classical theory of laser action.
For example, the equality in (3.5.11) gives the value of g = o/¢yc at which am-
plification is first possible. This is the threshold gain, usually denoted g,. Unfor-
tunately, none of this is realistic because (3.5.11) cannot be satisfied. That is, from
(3.5.9) we see immediately that g is intrinsically negative. Radiation in the cavity
will only be damped and never amplified by classical dipoles. A classical laser
theory based on the linear electron oscillator model is not possible.

The negative value of g is inherent in the classical theory. It requires a quantum-
mechanical treatment of the light-matter interaction to understand how g can be
made positive. Apart from this detail, it is remarkable how much of the present
classical formulation survives the transition to quantum theory. For example, ex-
cept for its sign, the form of the gain coefficient will turn out to be exactly correct.
The frequency-pulling equation (3.5.12) is exactly correct as it stands. The thresh-
old condition (3.5.11) is correct. We will find how to make g positive in Chapter
7, and in so doing will find other missing elements of laser theory, such as satu-
ration and power broadening.

3.6 THE ABSORPTION COEFFICIENT

We can associate the energy absorbed from an electromagnetic wave by an atom
with the work done by the wave on the Lorentzian oscillators. In classical me-

. chanics the rate at which work is done on an atom when a force F is exerted on it

is dW,/dt = F - v. In the electron oscillator model the force exerted on an electron
by the monochromatic field (2.3.1) is simply the Lorentz force appearing on the
right side of (2.2.18):

F., = efE, cos (ot — kz) (3.6.1)
in which case we can write

aw, dp :
—= =K - — 3.6.2
dt dt (3.6.2)

This expression does not lead to energy absorption by the oscillator if p is in
phase with E. In this section we focus attention on an oscillator near to resonance,
for which o (w) has a significant imaginary (quadrature) part and for which energy
absorption does occur. We can use (3.4.8) to obtain
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_ 2 e* 1
P 2mw wy — w — i

Ey ™l — R (3.6.3a)

which corresponds to the (real) physical moment:
p(z) = 2e[U cos (wt — kz) — V'sin (wt — kz)] (3.6.3b)

The coefficients U and V are easily found by computing the real part of (3.6.3a)
and comparing with (3.6.3b):

E —
R (3.6.4)
2me (wy — w) + B
and
E,
V= 220 B (3.6.5)

2me (g — w)2 + B2

The corresponding solution obtained without damping would have no quadrature
component corresponding to V. The existence of the quadrature component is crit-

ical to our discussion of absorption, as we now demonstrate. From Eq. (3.6.3b)
we obtain

d
?It) = —wte[Usin (ot — kz) + Vcos (ot — kz)] (3.6.6)

Therefore the rate at which the dipole energy changes is given by

aw,
T:A = —eEy[wU sin (ot — kz) cos (wt — kz) + wV cos® (wt — kz)]
= ewEy| —1 U sin (2wt — 2kz) — V cos® (wt — kz)] (3.6.7)

Notice that the dipole’s energy gain has two distinct contributions. The first
term oscillates extremely rapidly and is zero on average, and thus does not give
rise to any permanent change in energy. The second term, however, is always
positive-definite and corresponds to a steady decrease in field energy with time.
Then the rate of change of electromagnetic field energy, equal and opposite to
dW, /dt, is effectively governed by the second term alone:
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dw,,,
dt

I

ewEyV cos® (wt — kz)

e? 8
= —— " F2cos® (wt — kz (3.6.8
2m(w0—w)2+{32 [ ( ) )

where we have used the expression (3.6.5) for V.
Thus we may express the rate (3.6.8) at which electromagnetic energy is ab-

sorbed by an atom in terms of the magnitude of the Poynting vector at the atom
[recall (2.6.4)]:

AWer, e’ B

dt 2e0me (wy — w)’ + B2

|S] (3.6.9)

This result is similar to (2.6.5). Both equations show that dW., /dt is proportional
to | S |. Of course (2.6.5) gives the rate of change of electromagnetic energy in a
light beam due to scattering, whereas (3.6.9) gives the rate due to absorption.

The similarity of (3.6.9) to (2.6.5) means that we may define an absorption
cross section: :

e? B

2eome (wy — cu)2 + B2

o(w) = (3.6.10)

We may follow the same steps, leading from (2.6.6) to the extinction coefficient

(2.6.16) due to scattering, to obtain the extinction coefficient due to absorption in
a medium of N atoms per unit volume:

Ne? 8

alw) = Nolw) = 3 o ——

(3.6.11)

‘This extinction coefficient is usually called simply the absorption coefficient. The
intensity of the incident wave after propagating a distance z into the absorbing
medium is

I(z) = I,(0) e~z (3.6.12)

just as in the case (2.6.15) when the incident wave is attenuated because of scat-
tering.

Equation (3.6.12) is identical to (3.3.24). We have simply obtained the same
physical result for the field attenuation due to absorption using two approaches. In
the first approach, leading to (3.3.24), absorption was associated with the imagi-
nery part of the complex refractive index. In this section we have obtained the
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same result via the rate at which a single atom absorbs energy from the field. The
two approaches are equivalent. Keep in mind, however, that the absorption coef-
ficient derived here is physically distinct from the extinction coefficient due to
scattering derived in Section 2.6. Both lead to exponential attenuation of intensity,
and the total extinction coefficient includes both.

The absorption coefficient is often written in terms of the circular frequency »,

=w/27 (3.6.13)

rather than the angular frequency w. From (3.6.11), therefore,

Ne* )
a(v) = — %0 (3.6.14)
dmeome (p — po) + Svd
where
vy = wo/27 (3.6.15)
and ‘
évy = B/2w : (3.6.16)
The absorption coefficient (3.6.14) is frequently written in the form
Ne?
= L 3.6.17
a(r) = 3o L(¥) (3.6.17)
where the lineshape function L(») is defined by
6
L(») = o/ (3.6.18)

(v — vo)2 + 6v3

This is called the Lorentzian function, and is plotted in Figure 3.8.

The Lorentzian function is a mathematically idealized lineshape in several re-
spects. We have already shown that it is the near-resonance approximation to the
more complicated function (3.3.25). The Lorentzian function is defined mathe-
matically for negative frequencies, even though they have no physical significance.

It is exactly normalized to unity when integrated over all frequencies, as is easily
checked:

S dv L(y) = 22 S — (3.6.19)
—® T J-o (y — y) + bvd
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Lorentz lineshape
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Figure 3.8 The Lorentzian lineshape function.

and the normalization is approximately the same when only the physical, positive
frequencies are used. The approximation is excellent for dvy << g [rec.all
(3.3.10)1. In other words, the contribution of the unphysical negative frequencies
is negligible because the linewidth is negligible compared with the resonance _fre-
quency, and in this sense L(») is physically as well as mathematically normalized
to unity.

The maximum value of L(») occurs at the resonance v = vg.

1
= =— 3.6.20
L(v), .. = L{%) ov, ( )
At v = vy + Sy, we have
L(v + ) = —— = 2 L(») (3.6.21)
0= "0 T ondry 2 max

Because of this property, 26, is called the width of the Lorentzian function or the
full width at half maximum (FWHM), and 6w, is called the half width at half max-
imum (HWHM). The Lorentzian function is fully specified by its width (FWHM
or HWHM) -and the frequency », where it peaks. The absorption coefficient is
greatest at resonance, where

Ne?
= = 3.6.22
a(v =) 4regmedvy ( )
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and decreases to half this resonance value when the field is ‘‘detuned’’ from res-
onance by the half width é», of the Lorentzian function.

Our classical theory thus predicts that the absorption is strongest when the fre-
quency of the light equals one of the natural oscillation frequencies of the bound
electrons. Far out in the wings of the Lorentzian, where |v — vy| >> 8y, there
is very little absorption. A knowledge of the width év, is therefore essential to a
quantitative interpretation of absorption data. In order to determine the numerical
magnitude of v, in a given situation, we must consider in some detail the physical
origin of this absorption width. This we do in Section 3.9.

We shall see later that a (») does not always have the Lorentzian form (3.6.17).
However, it will always be possible to write the absorption coefficient as

a(v) = a,S(v) (3.6.23)

where the lineshape function S(»), whatever its form, is normalized to unity:

- S: dvS(v) =1 (3.6.24)

With this normalization it follows that

S: dva(v) = a S: vS(v) = a, (3.6.25)

The integrated absorption coefficient g, is convenient because it is independent of
the lineshape function S(»), which may vary with parameters like pressure, tem-
perature, etc. It thus provides a measure of the inherent absorbing strength of the
atoms.

3.7 OSCILLATOR STRENGTH

Even more than the integrated absorption coefficient, the integrated absorption
cross section, namely

o, = a,/N (3.7.1)

is a convenient measure of absorption, because it characterizes the inherent ab-
sorbing strength of a single atom. From (3.6.23) and (3.6.17) we see that

4= N (3.7.2
' 4egme 72)
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and therefore

eZ

= 3.7.3
4egme ( )

The numerical value of o, is easily computed to be approximately 2.65 X 1072
cm?-sec”!. This is a universal value, and according to our theory is applicable to
absorption by any atomic material.

Extensive experimental absorption data exist for atomic hydrogen. For exam-
ple, it is known to absorb strongly at a wavelength of about 1216 A, with an
integrated absorption coefficient of about 1.1 X 1072 cm®-sec”'. Thus our clas-
sical electron oscillator theory gives a reasonable order of magnitude, although it
is far from being quantitatively accurate. However, atoms do not absorb at only
one wavelength. Table 3.1 lists some wavelengths at which atomic hydrogen ab-
sorbs radiation. Our classical theory gives an integrated absorption cross section
(3.7.3) which is independent of vy, so that the same numerical value (2.65 X 1072
cm?-sec™ ") should apply to every wavelength listed in Table 3.1. The second col-
umn of Table 3.1 lists the observed integrated cross sections of these absorption
lines, while the third column gives the ratio of the observed value for each line to
the result (3.7.3) of the classical theory. We see that the classmal result comes
close to the integrated absorption cross section only for the 1216- A line.

Before the advent of the quantum theory, this quantitative failure of the classical
theory was sidestepped by writing the integrated absorption cross section of a one-
electron atom as

82

= 3.74
4egme ( )

where the parameter f is called the ‘‘oscillator strength,”” and its values are given
by the third column of Table 3.1. In other words, the classical theory was patched
up by assigning a different “‘oscillator strength’ to each natural oscillation fre-

TABLE 3.1 Some Integrated Cross Sections of Atomic Hydrogen

Wavelength g, (actual) _ g, (actual)
(A) (cm-sec™") f= g, (classical theory)
1216 1.10 x 1072 0.416
1026 2.10 x 1073 0.079

973 7.69 x 107 0.029
950 3.71 x 107* 0.014
938 - 2.07 x 107* 0.0078
931 1.27 x 107 0.0048
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quency. In fact the integrated absorption cross section for any atom could be writ-
ten in the form (3.7.4) by making the ad hoc replacement

e’ e

2
—=—f (3.7.5)

wherever the quantity on the left appeared. In this way the Lorentz theory (of both
absorption and the refractive index) was brought into detailed numerical agreement
with experimental results. We will include £ in most classical formulas hereafter.
Like the natural oscillation frequencies, however, the oscillator strengths had to
be taken as empirical parameters, without a theoretical basis. Quantum theory re-
moves both of these defects of Lorentz’s model. :

3.8 ABSORPTION OF BROADBAND LIGHT

The rate"at which the energy W, of an atom increases due to absorption of elec-
tromagnetic energy may be obtained from (3.6.2) or (3.6.9):

W,  —dW,,  we’f B/x
dt dt - 2€0mc (w — (00)2 + 62
2
mef [ 1
=——|—F I .8.
2eqmc <21r (V)> ’ (3.8.1)

where we have added the subscript » to remind us that , refers to the intensity of
monochromatic radiation at the frequency ».

Equation (3.8.1) gives the rate of increase of the energy of an atom due to
absorption from a monochromatic field of frequency ». In reality, of course, the
applied field will not be perfectly monochromatic. Hereafter we will indicate ex-
plicitly the dependence of field quantities on the frequency: W, = W2 and I —
I,. The change in atomic energy is due to the action of all the frequency compo-

nents:
_d1> _ 5 (W
dt ) dt

5 S() 1, (3.8.2)

4egme v

In many cases of interest the field is composed of a continuous range of frequen-
cies, and the summation in (3.8.2) must be replaced by an integral:
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<%>m L _ef S: S() I(») dv (3.8.3)

dt deqme

where I(») dv is the intensity of radiation in the frequency band from » to » + dv.

It is convenient to define a spectral energy density p(v), such that p(v) dv is
the electromagnetic energy per unit volume in the same frequency band (Figure
3.9). The total electromagnetic energy per unit volume is then

oo

® 1
S p(»)dv =~ S I(v) dv (3.8.4)
0 c Jo
Clearly (3.8.3) may be rewritten

<dWA>mm _ S: S(v) p(v) dv (‘3.8.5)

dt 460 m

We can now define ‘‘broadband’’ light as follows. Whenever the spectral en-
ergy density p(») is a flat, almost constant function of » compared with the atomic
lineshape function S(»), we can write

Q

o) | avs(v)

= p(v) (3.8.6)

S: dv S(») p(»)

If p(») is perfectly constant, then of course (3.8.6) is an equality. Whether p(v)
is flat enough in its variation to justify the approximation (3.8.6) de.pe':nds on‘the
lineshape function S(»). The narrower the width of S(»), the easier it is to satisfy
(3.8.6). When this approximation is valid we may say that we have broadband
light and broadband absorption, as opposed to the opposite extreme of narrow-
band (i.e., monochromatic) absorption. Both extremes are limiting cases of (3.8.5).

plv)
>
/ Z
Z‘:J((u):p(v) Av
Z
4 Z
v vtAv

Figure 3.9 The spectral energy density o(») is defined so that u(») = p(») Av is the
electromagnetic energy per unit volume in the narrow frequency interval from v to » + Av.
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:I’herefore, the energy absorption rate for an atom exposed to broadband radiation
is

aw, e*f
& —4EOmP(V0) (3.8.7)

We see that for broadband absorption the rate at which the energy of the atom
increases is completely independent of the form of the lineshape function S(»),
and is simply proportional to the spectral energy density of the field at the dipole’s
natural oscillation frequency »,.

In Table 3.2 we collect the most important results of this section. For simplicity
we omit the background refractive index from the equations. This is always an
excellent approximation for gaseous media, where mn is close to unity. However,
for solid medig the index must be included. We return to this point in our discus-

) TABLE 3.2 Results of the Classical Theory of Absorption by a
~Medium with N Atoms per Unit Volume.

Energy Absorption Rate of an Atom

aw,  &F [°
= = Zom Yo dv §(v) p(v)  (f = oscillator strength)
f
=~ Zegme S(v) 1, (narrowband radiation)
&f
~ 46? o(vg) (broadband radiation)

Lineshape Function

S(») peaks at the rf_:sonancé/frequency v = yyand
So dv S(v) =1

Awtenuation of Intensity for Radiation of Frequency v
1,(z) = L(0) e~

Ne?
a(v) = 4e n{c S(»)  (absorption coefficient )
0
_ Ne*f ) .
" degme (integrated absorption coefficient)

The oscillator strength f has been included by making the replacement (3.7.5),
&/m— & /m.
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sion of laser gain in Chapter 10. We have furthermore refrained from specifying
the form of the lineshape function S(»); the question of different lineshapes is
taken up in the following sections. The equations of Table 3.2 are valid for any
lineshape function.

3.9 COLLISIONS AND “FRICTION”’ IN THE LORENTZ MODEL

In the preceding sections of this chapter we have shown that light is strongly ab-
sorbed when it is nearly resonant with one of the natural oscillation frequencies of
the molecules of a medium, and that absorption is due to ‘‘frictional’’ processes
that damp out dipole oscillations. We have also shown that any frictional force in
the Newton equation of an electron oscillator leads to a broadened absorption line,
the lineshape being Lorentzian. We did not, however, give any fundamental ex-
planation for the existence of frictional processes. We will now approach the ques-
tion of absorption and lineshape from a more fundamental viewpoint, focusing our
attention on ‘‘line broadening’* mechanisms in gases, in order to answer the ques-
tion of the origin of the frictional coefficient 3.

It is a well-known result of experiment that, for sufficiently large pressures, the
width of an absorption line in a gas increases as the pressure increases. This
broadening is due to collisions of the molecules and is therefore called collision
broadening, or sometimes pressure broadening. Collision broadening is the most
important line-broadening mechanism in gases at atmospheric pressures, and is
often dominant at much lower pressures as well. We will begin our study by con-
sidering the details of collision broadening.

Our treatment of collision broadening will follow the original approach of Lor-
entz. We will find, for instance, that a kind of frictional force arises naturally as
a result of collisions, and that the damping rate 3 can be interpreted as simply the
collision rate.

Let us consider the effect of collisions on an atom in the electric field of a laser
beam. We imagine collisions to occur.in billiard-ball fashion, each collision lasting
for a time that is very short compared with the time between collisions. We sup-
pose that, immediately prior to a collision, the active electrons in an atom are
oscillating along the axis defined by the field polarization, as indicated by (3.3.13).
During a collision, the interaction between the two atoms causes a reorientation
of the axes of oscillation. Since each atom in a gas may be bombarded by other
atoms from any direction, we can assume that on the average all orientations of
the displacements and velocities of the atomic electrons are equally probable fol-
lowing a collision. This is the assumption made by Lorentz. It is an assumption
about the statistics of a large number of collisions, rather than about the details of
a single collision.

Consider a gas of atoms at a given time ¢. Most atoms are not at this moment
involved in a collision. Consider in particular those atoms that underwent their
most recent collision at the earlier time ;. According to our (Lorentz’s) assump-
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tion, the average of the electron displacements and velocities for these atoms van-
ished at the time ¢, since all orientations of displacement and velocity vectors
were equally probable immediately after their collision. We assume that the elec-
trons in those atoms that had their last collision at time t; obey the Newton-Lorentz
equation (2.3.7), which we write here in complex notation:

Eq g7l ~ k) (3.9.1)

The electron displacement for a dipole satisfying this equation is obtained by com-
bining the homogeneous and particular solutions in such a way that x(¢) obeys the
initial conditions

x(1,) = <%>,=,, ~0 (3.9.2)

Note that these are initial conditions applying to the ‘‘average’’ atom, since we
have assumed that all displacements and velocities are equally likely after a col-
lision. The corresponding solution to (3.9.1) will be written

. eEy/m _: 1 w . .
x(hy) =28 wTL {e i <1 + —> e =1 p—ivny

5 — w? 2 wo
_ % <1 _ f_) ei“’o(t_tl)e_i“’tl] P (3.9.3)
0

It is easy to verify that (3.9.3) is the-desired solution, by checking that it satisfies
both (3.9.1) and the initial conditions (3.9.2). This solution will now be taken to
represent the average atom. It has this average significance even if it is not appli-
cable to any one of the atoms individually.

We wish to calculate the average electron displacement at time ¢ for atoms in
the gas, no matter when their last collision. We can obtain this by summing (3.9.3)
over all possible #;. We only need to know (at time ¢) the fraction daf (¢, t;) of
atoms for which the last collision occurred between ¢, and 7, + dt;. We show
below that this is given by

dar (e, 1) = e‘“"l)/T& (3.9.4)
T

where 7 is the mean time between collisions. The average electron displacement
{x(2)) for any atom at time ¢ is therefore obtained by multiplying (3.9.3) by the
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fraction (3.9.4) of atoms to which it applies, and then summing (integrating) over
all possible values of earlier times ¢;:

(x@) = | x(s )t

E, . 1\ {
=¢ ‘32 o/m2 e —ilwt — ka) <_> S_w dty e/

Wy — @ T

X {1 _1 1+ 2 gmitegmar—ry _ 1 1= ei(wow)(r—rl)}
2 Wy 2 [Oh)

(3.9.5)
The required integrals are

13 .
S dty e W/ = (3.9.6a)

t .
S dt) e i@ t=n) pmt—1)/1 = S (3.9.6b)

wo—w—i/7

i

_ 3.9.6
wotw+i/T ( °)

t
S dtl ei(w0+w)(t—t|)e—(t—tl)/r —
—0o0

The average electron displacemenf is therefore given by

eEg/m i -
(X(t))=€g%e (@t — kz)

x|1+=— o _ L :
27 wo—w—i/T 27 wgtw+i/T

£(eEy/m) e (et — kD

. = 3.9.7
w§ — o — 2w/7 + 1/72 ( )

and the corresponding polarizability is

_ e*/m
a(w) = wy — w? = 2iw/7 + 1/7%

(3.9.8)

Note that, except for the term 1 /72, this is the same as (3.3.17) if we identify the
frictional coefficient § with the collision rate 1 /7.
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The main conclusion to be drawn from our collision analysis is obvious. Given
the strong inequality

wr >> 1 (3.9.9)

which implies that the mean time between collisions is much longer than an optical
period ( ~ 10~ " sec), and which is an excellent approximation in practice, the last
term in the denominator of (3.9.8) can be dropped. Then the effect of collisions is
exactly the same as the effect of a frictional damping force if we let

1
B8 = — = collision rate (3.9.10)
T -

However, we must not lose sight of the statistical nature of our treatment of col-
lisions. We should really say that a frictional term in the Newton equation is jus-
tified by the effects of collisions on the average. Thus we can give up the artificial
notion of friction at the atomic level, but still use all of the results derived from
it, if we reinterpret x(¢), U, V, and W, in Sections 3.5 and 3.6 as average values
in the sense of (3.9.5). We are thus led to regard the results of Table 3.2 with the
Lorentzian lineshape function (3.6.18) as the consequences of collision broaden-
ing. The width (HWHM) of this collision-broadened lineshape function is

(3.9.11)

The damping term we introduced empirically earlier in (3.2.3) may now be inter-
preted as the damping of the average electron displacement, i.e.,

da? d
— (x) +ZBE

(x) + @2 (x) =82 E e~ (3912
2
dt — m

Collision broadening is often described equivalently in terms of a ‘‘dephasing”’
of the electron oscillators, as follows. Immediately after a collision the phase of

the electron’s oscillation has no correlation with the precollision phase. Collisions

have the effect of ‘‘interrupting’” the phase of oscillation, leading to an overall
decay of the average electron displacement from equilibrium (Figure 3.10). The
damping rate in (3.9.12) is sometimes called a ‘‘dephasing’’ rate, in order to dis-
tinguish it from an ‘‘energy decay’’ rate. The latter would appear as a frictional
term in the equation of motion of each electron oscillator as well as in the average
equation. In the absence of any inelastic collisions to decrease the energy of the
electron oscillators, each oscillator would satisfy the Newton equation (2.3.7) with
no damping term. Due to elastic collisions, i.e., collisions which only interrupt
the phase of oscillation but do not produce any change in energy, the average
electron displacement follows equation (3.9.12), which includes damping.
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collision collision collision

t
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Figure 3.10 Electron oscillations in three different atoms in a gas. Collisions completely
interrupt the phase of the oscillation. The average electron displacement associated with all
the atoms in the gas therefore decays to zero at a rate given by the inverse of the mean
collision time.

¢ To complete our derivation of (3.9.7), we must prove our assertion (3.9.4). The mean
time between collisions, 7, is obviously an average; a given atom certainly does not have
collisions in evenly spaced intervals of time 7. We can only say that the probability of any
given atom having a collision in a small time interval Az is given by At times the mean
number of collisions per unit time, 1/7. If at time T there are 7(T') atoms which have not
yet had a collision since the time T = 0, then the number of “‘collisionless’” atoms at time
T+ ATis

7T+ AT) = (1) - (1) 5 (3.9.13)

- In words, 4 (T') decreases by the amount 5 (7T) AT/7, which is the number of atoms col-

lisionless since the time T = 0, times the probability that any one such atom will have a
collision in the time interval AT. Thus

(T + AT) — o(T) _ _2(T)

AT . (3.9.14)
The limit AT — 0 gives the simple differential equation
dy(T) 1
= ——q9(T 3.9.15
L - ) (3.9.15)
with the solution
‘ 7(T) = noe™ /" (3.9.16)

Since 7, is the total number of atoms in the gas, the quantity

P(T) = /7 (3.9.17)




98 CLASSICAL THEORY OF ABSORPTION

is the probability that a given atom has had no collision for a time T. At T = 0, when we
begin ‘‘looking,’” this probability is unity. For T >> 7 it is very small, because in all
likelihood the atom will have a collision before many collision times 7 have elapsed.

The probability that a given atom will have no collision for a time 7, and then have a
collision within a time interval d7, is just the product of the probabilities for these two
“‘events’’, i.e., P(T) dT/7. This is just the fraction df (T'), of the total number of atoms,
that can be expected to have their next collision within the time interval from T'to T + dT,
after we begin ‘‘looking”” at T = 0. If we imagine a movie showing the movements and
collisions of the atoms, we can run our film backwards in time and the collisions will exhibit
the same statistical behavior. And we will observe the same statistical behavior regardless
of where we begin looking.

The atoms at time ¢ that had their last collisions in the interval from #; to #; + dt; will
be just those having their next collision in the same interval when we look at the gas back-
wards in time beginning at time ¢. Thus the fraction df (z, #;) of atoms at time ¢ that had
their last collision in an interval dt; of #; < f will be the same as the fraction of atoms at
time ¢ which will have their next collision in an interval df; of ¢; when the film is run
backwards. This is just the probability P(T) dt, /7 found above, with T = ¢ — ¢;. Thus

dn,

dt
& (6 0) = P(t = 1) 2 = e S

(3.9.18)

which is the same as (3.9.4). ¢

3.10 COLLISION CROSS SECTIONS

We have shown in the preceding section that collisions, on average, can produce
the same effect as frictional damping on an electron oscillator. The damping rate
8 can be identified with the collision rate 1 /7. Therefore the magnitude of 1 /7 is
of direct significance for realistic estimates of line broadening.

The collision rate 1/7 may be expressed in terms of the number density N of
atoms, the collision cross section ¢ between atoms, and the average relative ve-
locity ¥ of the atoms. Imagine some particular atom to be at rest and bombarded
by a stream of identical atoms of velocity #. If the number of atoms per unit
volume in the stream is N, then the number of collisions per unit time undergone
by the atom at rest is No¥, where the area o is the collision cross section between
the atom at rest and an atom in the stream. The number of collisions per second
is the same as if all the stream atoms within a cross-sectional area ¢ collide with
the stationary atom. The idea here is exactly the same one used to define scattering
and absorption cross sections for incident light.

According to the kinetic theory of gases, an atom of mass m, has an rms velocity

kT 1/2
Vs = <8 > (3.10.1)

T,

in a gas in thermal equilibrium at temperature T, where k is Boltzmann’s constant.
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To obtain the average relative velocity vy, of colliding atoms of masses m, and m,
in the gas, we replace m, in (3.10.1) by the reduced mass

m,m, 1 1\
By = = <“— + *> (3.10.2)
y

m, +m m, m,

Thus -

Ty = Fk—T <l + Lﬂl/z (3.10.3)

T \m, m,

It is convenient to express this in terms of the atomic (or molecular) weights M,

and My:
1/2
5-{g§i+i] (3:104)
el T \M, M, e

where R, the universal gas constant, is Boltzmann’s constant times Avogadro’s
number. The collision rate for molecules of type x is therefore

% = ZY} N(Y)o(X, Y) 54(X, Y)

= Eyl N(Y)o(X, Y) [%T <Mix + Miyﬂm (3.10.5)

. where the sum is over all species y, including x.

The important ‘‘unknowns’’ in the expression (3.10.5) are the collision cross
sections o (X, Y). It often happens that these are not known very accurately. They
are difficult to derive theoretically, and experimental determinations are not always
unambiguous. The simplest approximation to the cross section is the *‘hard-sphere”’
approximation. We write

(X, Y) = %r (d, + d,)° (3.10.6)

where d, and dy are the ‘‘hard-sphere’” molecular diameters, estimates of which
are sometimes tabulated. o (X, Y) is just the area of a circle of diameter d, + d,,
just what we would expect if the molecules acted like spheres of diameters d, and
d,. For CO,, for example, the hard-sphere diameter is about 4.00 A. From
(3.10.6), therefore, the hard-sphere cross section for two CO, molecules is 0 (CO,,
CO,) = 5.03 x 107" c¢m?. For a gas of pure CO, at T = 300 K we find the
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average relative velocity of two colliding CO, molecules to be 7,y = 5.37 X 10*
cm/sec. The collision rate (3.10.5) in the ‘‘hard-sphere’” approximation is there-
fore '

1_ N(5.03 x 107" cm?) (5.37 X 10* cm/sec)
;

=2.70 x 107N /sec (3.10.7)

where N is the number of CO, molecules in a cubic centimeter. For an ideal gas
we calculate (Problem 3.5)

N = 9.65 x 10'®

ﬂ;’n) (3.10.8)

where P-(Torr) is the pressure in Torr (1 atmosphere = 760 Torr) and 7 is the
temperature (K). From (3.10.7), finally, the collision rate for a gas of CO, at 300
Kis

N =

= 8.69 X 10°P(Torr) sec™! (3.10.9)
Thus at a pressure of 1 atmosphere (760 Torr) we calculate the collision rate

1_ 6.60 x 10° sec™! (3.10.10)
-

and from (3.9.11) the collision-broadened linewidth

dvy = 1.05 x 10° Hz (3.10.11)

The actual collision-broadened linewidths can be larger, by as much as an order
of magnitude or more, than those calculated in the hard-sphere approximation. The
value calculated above, however, is reasonable, and it allows us to point out some
general features of the collision-broadened linewidths. First we note that the col-
lision rate (3.10.10) is very much smaller than an optical frequency, as assumed
in (3.9.9). The linewidth &y, is thus also orders of magnitude less than an optical
frequency. This explains why we can speak of absorption ‘‘lines’’ in a gas, even
though the absorption occurs over a band of frequencies: the band has a width
(~28wy) that is very small compared with the resonance frequency »g.
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From (3.10.9) we note that the linewidth is linearly proportional to the pressure.
For this reason, experimental results for collision-broadened linewidths are often
reported in units such as MHz-Torr'. The linewidth calculated above, for in-
stance, may be expressed as 1.38 MHz-Torr™! at 300 K.

Our treatment of collision broadening only highlights some general features of
a complex subject. In actual calculations we prefer always to use measured values
of the collision-broadened linewidths. We note parenthetically that, for the 10.6-
pm CO, laser line, the linewidth (1.38 MHz-Torr™!) computed above is about
three times smaller than the experimentally determined value. It is possible to
calculate these widths more accurately, but this will not concern us.

3.11 DOPPLER BROADENING

The Doppler effect was demonstrated for sound waves in 1845 by C. H. D. Buys
Ballot, who employed trumpeters performing in a moving train to demonstrate it.
The mathematician C. J. Doppler had predicted the effect in 1842. His prediction
applied also to light, although Maxwell’s electromagnetic theory of light waves
was still nearly a quarter of a century away.

Let us consider again a gaseous medium, this time only very weakly influenced
by collisions (i.e., § is very small). Every electron oscillator will thus undergo
practically undamped oscillation at the field frequency. Nevertheless we will show
that, because of the Doppler effect, an absorption line is broadened and its width
can be much larger than 8. We will find that the lineshape associated with the

‘ Doppler effect is not the Lorentzian function (3.6.18), but rather the Gaussian

function given in (3.11.6) below.
To an atom moving with velocity v << ¢ away from a source of radiation of
frequency », the frequency of the radiation appears to be shifted:

» =y <1 - 3) (3.11.1)

C

- This is the Doppler effect. It implies that a source of radiation (e.g., a laser) exactly

resonant in frequency with an absorption line of a stationary atom will not be in
resonance with the same absorption line in a moving atom, and the frequency offset
is 8 = (v/c)v. Similarly, a nonresonant absorption line of an atom may be brought
into resonance with the field as a result of atomic motion. Since the atoms in a gas
exhibit a wide variety of velocities, a broad range of different effective resonance
frequencies will be associated with a given absorption line. In other words, the
absorption line is broadened because of the Doppler effect. The absorption line is
thus said to be Doppler-broadened.

For a gas in thermal equilibrium at the temperature T, the fraction df (v) of
atoms having velocities between v and v + dv along any one axis is given by the
(one-dimensional) Maxwell-Boltzmann distribution,
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1/2
df(v) = <ZZ;T> e~ P2MT gy (3.11.2)

Here again  is the Boltzmann constant and m, is the mass of an atom or molecule.
Because we have assumed that collisions are almost negligible, an atom with res-
onance frequency », and velocity v moving away from the source of radiation will
only absorb radiation very near to (within Ay = 8 /27 of) the frequency

y = u0<1 + %) (3.11.3)

The fraction of atoms absorbing within the frequency interval from » to » + dv is
thus equal to the fraction of atoms with velocity in the interval from v to v + du.
From (3.11.3) we have

v = Vi (v — ) (3.11.4)

and dv = (c/vy) dv. Using (3.11.2) we can determine that this fraction is

1/2 ‘ ’
df,(v) = <2?£T> g (v =0/ 2T <V£0 dv> (3.11.5)

Since the absorption rate at frequency » must be proportional to df, (v), we may
write the Doppler lineshape function as

m C2 1/2 2 2 2
S(V) — x > e~ mC (v —wp) /2kTv (3116)
0

Since (3.11.2) was normalized to unity when integrated over velocity, (3.11.6) is
normalized to unity with respect to the frequency offset (or ““detuning’”) v — »,,
as required by the definition of lineshape function.

By direct computation using (3.11.6) we find

o

S dv S(v) = S(») S dy e (v —v)?/2KT¥}
0 0

o
= S(»o) S du e~/ 2]
v

~ S(Vo) S_ d[,l. e—mchuz/ZkTv%
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st [ 22 (22)"]

=1 (3.11.7)

We have used the excellent approximation kT << m,c” to replace the lower limit
of the integral by — co. Thus we may write

1/2
= ([ —mzc? (v = 1)/ 2KTvg 3.11.8
S0) = <21rkT> ¢ ( )

It is convenient to define

172
2T
Sy, = 2? <7 In 2> (3.11.9)
in terms of which
1/2
S0) =3 <4 - 2> e 2/, (3.11.10)
Vp iy

and we recognize that 4, is the width (FWHM) of the Doppler absorption curve,
since

S(VO + %6VD) — S(VO) e—1n2 — %—S(Vo) ‘ (31111)

6vp is commonly called the Doppler width (Figure 3.11). The Doppler width is
also often defined in terms of the 1/e point of the curve, rather than the half-
maximum point. Sometimes it is defined as the half width at half maximum
(HWHM) rather than the FWHM. Thus one finds formulas in the literature differ-
ing by factors of 2, In 2, etc. It is important to keep these possible differences in
mind when comparing calculations.

The peak of the Doppler curve at » = », has the value

4 S(vo) = L(

(3.11.12)
BVD

41n 2)‘/"‘
7r i

where S(»,) is evidently the peak value of S(»), for which » = y,. S(»,) is
determined from the normalization condition (3.11.7).
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TABLE 3.3 Collision, Doppler, and Voigt
Lineshapes

Collision-Broadening Lineshape

(1/7) dvy
S(» =
) (v — ») + 843

collision rate

6 =
Yo 2T

Doppler-Broadening Lineshape

S(v) = w e~ 27— /5
61’0
1/ T\
dvp = 2.15 x 106[— — }
vp N <M> MHz

T = gas temperature (K)
M = molecular weight of absorber (g)

Ao = wavelength (A) of absorption line

Voigt Lineshape
0.939
S(v) = Re w(x + ib)
61’1)
Vo — ¥V
= 1.67
* BVD
b =167
6VD

w = error function of complex argument

3.13 EXAMPLE: ABSORPTION BY SODIUM VAPOR (

Let us consider an example of the use of Tables 3.2 and 3.3. Consider the 5890-
A absorption line of sodium vapor at 300 K. The Doppler width is

1 /300\'?
vy = 2.15 x 102 [— i ]
i 1071 5500 \ 23 Hz

~ 1300 MHz (3.13.1)

since the atomic weight of sodium is My, = 23 g. From tabulated data we can
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estimate the collision broadening linewidth of the 5890-A line in pure sodium
vapor at 300 K to be

8vy = 1700P(Torr) MHz (3.13.2)
The ratio b of Table 3.3 is therefore
b = 2.2P(Torr) (3.13.3)

If P(Torr) is less than, say, about 0.1 Torr, we are in the ‘‘Doppler regime.”’ In
this case the absorption coefficient for narrowband light exactly resonant with the
5890- A absorption line is found from Table 3.2 at the end of Section 3.8 to be

ef
= N
a(w) degne S(vo)
/2
f 1 [4m2\
=——N—|— 3.134
4egmce 6VD< ™ > ( )

For the sodium D lines the oscillator strength—the factor f—is of order unity. In
fact the 5890- and 5896-A lines have oscillator strengths of 0.355 and 0.627,
respectively. From (3.13.4), (3.13.1), and (3.10.8), therefore, we obtain

a(v) = 2.2 X 10°P(Torr) cm™! (3.13.5)

which is valid provided the pressure is small enough that Doppler broadening pre-
vails. For narrowband light of frequency » not necessarily equal to vy we have

a(v) = 2.2 X 10°P(Torr) ¢4 ~70* I8 2/5% ¢y =1 (3.13.6)

In Figure 3.14 we have plotted the transmission coeflicient

I,,(Z) = e—a(v)z

70) (3.13.7)

v = yy 128y,

1.0

08 v =1, 2158y,

Oosf+ galviz

vs. Z
o4l Figure 3.14 Transmission coefficient for
’ 5890- A radiation in sodium vapor at T =
ozH verp £ Bup 300K, P =5 X 10f5 Torr. In this case the
v=1 absorption line is Doppler-broadened, with

dvy = 1300 MHz. The four curves illustrate
the high selectivity of the absorption pro-
z{cm) — cess.
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for nearly monochromatic light of slightly different frequencies. It is evident that
the transmission coefficient has an extremely strong dependence on the detuning
v — »o. The detuning of the field frequency » by just a very small fraction of »
from the resonance frequency », results in a very sharp increase in the transmission
coefficient. Similar results apply at higher pressures, where collision broadening
becomes important.

PROBLEMS

3.1

3.2

3.3

3.4%

3.5

3.6

Assume the “‘spring constants’’ k for the binding of electrons in atoms are
approximately the same as those for the binding of atoms in molecules. If
v = 5 X 10" Hz is a typical electronic oscillation frequency, estimate the
range of frequencies typical of atomic vibrations in molecules, given typical
electron-atom mass differences. Does your estimate indicate that molecular
vibrations lie in the infrared region of the spectrum?

The atomic weight of lithium is 6.939 g, and the density of lithium is 0.534
g/cm’. Assuming each lithium atom contributes one electron to the *‘free-
electron gas,”” calculate the plasma frequency v,. For what wavelengths
would you expect lithium to be transparent? (Note: The transparency of the
alkali metals in the ultraviolet was discovered by R. W. Wood in 1933.)

The addition of an ohmic current density to Maxwell’s equations leads to
the wave equation (3.5.6). Show this by adding J = ¢E to the right side of
(2.1.4) and then retracing the derivation of the wave equation (2.1.13).

Derive the equation for classical “‘laser amplification’” by substituting

(3.5.2) into (3.5.6), allowing E, to be time-dependent: E, = E, (). It is

sufficient to assume that E, (¢) is slowly varying so that terms proportional

to d°E,/dt? can be discarded.

(a) Obtain the equation for dE,/dt.

(b) Use the approximations and abbreviations given in Egs. (3.5.7)-(3.5.10)
to show that d|E, |*/dt = 0 if g = ¢ /¢,c.

(©) Sketch on one graph the behavior of E,(t) vs. t obtained from the so-
lution of the equation for d|E, |*/dt under the (unrealistic) assumption
that g = 20 /¢,c, and the (more realistic) assumption that g = —2¢/¢4c.

Show that the number of atoms (or molecules) per cm® of ‘an ideal gas at
pressure P and temperature T is given by (3.10.8).
a. Verify Eq. (3.12.3).

b. Using Egs. (3.4.9) and (3.4.11), show that in the absence of back-
ground atoms

3.7*

3.8

3.9

3.10
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Novo—w

L4
4T 61/0 a(”)’ )\0 - Vho

ng(v) — 1 =

This equation relates the refractive index near a collision-broadened ab-
sorption line to the absorption coefficient.

Although the relation derived in Problem 3.6 applies to the case of collision
broadening, a similar relation holds more generally. Show in the case of a
Voigt profile that

Ao Im w(x + ib)

—_ 1 =
() 47 Re w(x + ib)

a(v)

where w, x, and b are defined in Section 3.12.

[Note: The relation between the refractive index and the absorption
coeflicient (or, equivalently, between the real and imaginary parts of
the complex refractive index) is a special case of the so-called Kramers—
Kronig relations. Such relations may be derived on very general grounds
based on causality.]

Estimate the absorption coefficient for 5890-A radiation in sodium vapor
containing 2.7 X 10'? atoms /cm® at 200°C. [See J. E. Bjorkholm and A.
Ashkin, Phys. Rev. Lest. 32, 129 (1974)].

The CO, molecule has strong absorption lines in the neighborhood of A =
10 pm. Assuming that the cross sections of CO, molecules with N, and O,
molecules are ¢(CO,, N,) = 120 A2 and ¢(CO,, O,) = 95 A2, estimate
the collision-broadened linewidth for CO, in the earth’s atmosphere. (Note:
since the concentration of CO, is very small compared with N, and 0O, in
air, you may assume that only N,~CO, and O,-CO, collisions contribute to
the linewidth.) Compare this with the Doppler width.

Consider the absorption coefficient a(»,) of a pure gas precisely at reso-
nance. Show that a () is proportional to the number density of atoms when
the absorption line is Doppler-broadened, but is independent of the number
density when the pressure is sufficiently large that collision broadening is
dominant.






