
2 CLASSICAL DISPERSION 
THEORY 

2.1 INTRODUCTION 

An understanding of lasers requires some knowledge of the way in which light and 
matter interact. Many features of this interaction may be explained using a simple 
classical model. In this chapter and the next we describe this model and use it to 
introduce some concepts that are especially important for lasers. 

We assume that the reader has previously encountered Maxwell's equations, at 
least briefly, and understands that they provide the most fundamental description 
of electric and magnetic fields. For a neutral dielectric medium (one with no free 
charges) Maxwell's equations are 

V · D = 0 (2.1.1) 

V · B = 0 (2.1.2) 

aB 
VXE=--at (2.1.3) 

aD 
VXH=-at (2.1.4) 

we·will be interested only in nonmagnetic media, for which 

B = p.0 H (2.1.5) 

where f.to = 4?r X 10 -? N /A 2 • The electric displacement D is defined as 

D = E0E + P (2.1.6) 

where 1/4?rEo = 8.9874 X 109 N-m2/C2 and the polarization Pis the electric 
dipole moment per unit volume of the medium. P is the only term in the Maxwell 
equations relating directly to the medium. 

Applying the curl operation to both sides of Eq. (2.1.3), we obtain 

aB a 
V X (V X E)= -V X-= -- (V X B) at at (2.1.7) 
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Now we use the general identity (see Problem 2.1) 

V X (V X E) = V(V · E) -V2E (2.1.8) 

ofvectorcalculus, together with (2.1.5) and the Maxwell equation (2.1.4), to write 

Finally we use the definition (2.1.6) of D and rearrange terms: 

Here we have used the fact that 

1 
EoJ-to = 2 

c 

where c = 2.998 X 108 m/ sec is the velocity oflight in vacuurri. 1 

(2.1.9) 

(2.1.10) 

(2.1.11) 

Equation (2.1.10) is a partial differential equation with independent variables 
x, y, z, and t. It tells us how the electric field depends on the electric dipole moment 
density P of the medium. We will be particularly interested in transverse fields 
(sometimes called solenoidal or radiation fields). Such fields satisfy 

V · E = 0 (2.1.12) 

Transverse fields therefore satisfy the inhomogeneous wave equation 

(2.1.13) 

This is the fundamental electromagnetic field equation for our purposes. In or­
der to make any use of it we must somehow specify the polarization P. This cannot 
be done solely within the framework of the Maxwell equations, for P is a property 
of the material medium that the field E propagates in. We need to know how a 
dipole moment density P is produced in the medium. For this purpose we will 
introduce in the next section a theory of dielectric media. 

First, however, we will finish this section with a discussion of solutions to the 
homogeneous (free-space) wave equation, which applies when there is no polar-

1. For convenience we include inside the cover of the book a table of physical constants that appear 
frequently in our study of lasers. 
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ization present. Laser resonator theory is based on the free-space wave equation 
and free-space solutions. Such solutions are useful, even though lasers do not op­
erate in vacuum, because most laser media are optically homogeneous. 

We will consider only the case of a rectangular cavity, as sketched in Figure 
1.10. We also imagine we have perfectly reflecting walls; then the components of 
the electric field parallel to the walls must vanish on the walls. The electric field 
inside the cavity satisfies the wave equation 

. (2.1.14) 

For a monochromatic field of angular frequency w = 21rv, we may use the com­
plex-field representation (where the physical electric field is understood to be the 
real part of the right-hand side): 

E(r, t) = E0 (r) e-iwt (2.L15) 

and (2.1.14) becomes 

k = wlc (2.1.16) 

That is, 

(2.1.17) 

and likewise for the y and z components. 
To solve (2.1.17), it is convenient to use the method of separation of variables. 

Separation means that the solution is written in a factored form: 

Eox(x, y, z) = F(x) G(y) H(z) (2.1.18) 

and then inserted in (2 .1.17). After carrying out the differentiations required by 
V2 = a2 I ax2 + a2 I ay 2 + a2 I az2

' we divide through by the product FGH and 
obtain 

(2.1.19) 

Since each of the first three terms on the left side is a function of a different in­
dependent variable, Eq. (2.1.19) [and hence (2.1.17)] can only be true for all x, 
y, and z if each term is separately constant, i.e., 
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with 
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1 d 2F --- -k; 
Fdx2 -

1 d 2G a dy2 = -k; 
1 d 2H 
H dz 2 = -k; 

(2.1.20a) 

(2.1.20b) 

(2.1.20c) 

(2.1.21) 

The boundary condition that the tangential component of the electric field vanishes 
on the cavity walls means that 

and 

or 

E0x(x, y = 0, z) = E0x(x, y = Ly, z) = 0 

Eox(x, y, z = 0) = Eax(x, y, z = Lz) = 0 

G(O) = G(Ly) = 0 

H(O) = H(Lz) = 0 

A solution of (2.1.20b) satisfying the boundary condition G(O) = 0 is 

(2.1.22a) 

(2.1.22b) 

(2.1.23a) 

(2.1.23b} 

(2.1.24) 

In order to satisfy G(Ly) = 0 as well, we must have sin kyLy = 0, or in other 
words 

m = 0, 1, 2, ... (2.1.25a) 

In exactly the same way we find that solutions ofEq. (2.1.20c) satisfying (2.1.23b) 
are only possible if 

n = 0, 1, 2, ... (2.1.25b) 

Finally, consideration of the equations for the y and z components of E
0 

( r), to­
gether with the appropriate boundary conditions, shows that allowed solutions for 
E0 (r) must satisfy (2.1.25a), (2.1.25b), and 
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l = 0, 1, 2, ... (2.1.25c) 

The full solutions for the components ofE(r, t) satisfying Maxwell's equations 
and the boundary conditions inside the cavity are (Problem 2.2) 

(2.1.26a) 

(2.1.26b) 

(2.1.26c) 

where the coefficients Ax, Ay, and Az must satisfy the condition (Problem 2.3) 

(2.1.27) 

implied by the Maxwell equation V · E = 0, valid in the empty cavity. 
From Eqs. (2.1.21) and (2.1.25) we have 

(2.1.28) 

The possible modes of the rectangular closed cavity have allowed frequencies de­
termined by (2.1.28) and k = w/c = 21rvlc [recall (2.1.16)]: 

c (12 m2 n2)1/2 
V = Vtmn = 2 £2 + £2 + £2 

X y Z 

(2.1.29) 

This formula is a generalization of (1.3.7), in which case the cavity was assumed 
cubical (Lx = Ly = Lz = L). The same mode-density formulas given in Chapter 
1 are valid here, independent of cavity shape, as long as Lx, Ly, Lz are all much 
larger than 'A = c / v. That is, the number of modes in the frequency interval [v, v 
+ dv] is 

' 

. 81rv 2 

dNv = - 3- Vdv 
c 

and in the wavelength range d'A. the number is (Problem 2.4) 

(2.1.30a) 

(2.1.30b) 






















































































